Skip to main content

Heat Shock Proteins: Endogenous Modulators of Ferroptosis

  • Chapter
  • First Online:
Book cover Ferroptosis in Health and Disease

Abstract

The heat shock response is a transcriptional reprogramming mechanism used by cells to prevent damage or death. This highly conserved process is often involved in the upregulation of heat shock proteins (HSPs) by the activation of heat shock factors in response to external or internal stresses. Based on their molecular size, HSPs can be classified into six subfamilies, namely, HSP100, HSP90, HSP70, HSP60, HSP40, and small heat shock proteins. These HSPs play multiple roles in protein homeostasis, including the folding, unfolding, assembly, transport, sorting, or degradation of proteins. A dynamic HSP family network has long been implicated in the regulation of oxidative stress and regulated cell death. Ferroptosis is an iron- and lipid peroxidation-dependent type of necrosis that is implicated in tissue injury and cancer therapy. Unlike their role in mediating apoptosis resistance, HSPs play a dual role in ferroptosis, according to recent studies. In particular, inducible HSPB1 (also known as HSP25 in mouse or HSP27 in human)-dependent actin dynamics as well as inducible HSPA5 (also known as BIP or GRP78)-mediated GPX4 protein stability inhibits ferroptosis via blocking iron uptake and lipid peroxidation, respectively. In contrast, constitutively HSP90-related LAMP2A protein stability promotes GPX4 degradation and subsequent ferroptosis via the upregulation of HSPA8 (also known as HSC70)-mediated autophagy. In this chapter, we summarize the classification and function of HSPs and discuss the regulation of ferroptosis by HSPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19:164–174

    PubMed  PubMed Central  Google Scholar 

  • Adedoyin O, Boddu R, Traylor A et al (2018) Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol 314:F702–F714

    Article  CAS  PubMed  Google Scholar 

  • Arrigo AP (2017) Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell. Cell Stress Chaperones 22:517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C (2005) Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 7:414–422

    Article  CAS  PubMed  Google Scholar 

  • Asea A, Rehli M, Kabingu E et al (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Meng L, Han L et al (2019) Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 508:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Bailly C, Waring MJ (2019) Pharmacological effectors of GRP78 chaperone in cancers. Biochem Pharmacol 163:269–278

    Article  CAS  PubMed  Google Scholar 

  • Baturcam E, Snape N, Yeo TH et al (2017) Human metapneumovirus impairs apoptosis of nasal epithelial cells in asthma via HSP70. J Innate Immun 9:52–64

    Article  CAS  PubMed  Google Scholar 

  • Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci 41:274–286

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Canli O, Alankus YB, Grootjans S et al (2016) Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood 127:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao JY, Poddar A, Magtanong L et al (2019) A genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. Cell Rep 26:1544–1556 e1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappello F, Marino Gammazza A, Palumbo Piccionello A et al (2014) Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 18:185–208

    Article  CAS  PubMed  Google Scholar 

  • Caruso Bavisotto C, Nikolic D, Marino Gammazza A et al (2017) The dissociation of the Hsp60/pro-Caspase-3 complex by bis(pyridyl)oxadiazole copper complex (CubipyOXA) leads to cell death in NCI-H292 cancer cells. J Inorg Biochem 170:8–16

    Article  CAS  PubMed  Google Scholar 

  • Carver JA, Rekas A, Thorn DC, Wilson MR (2003) Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function? IUBMB Life 55:661–668

    Article  CAS  PubMed  Google Scholar 

  • Chan FK, Luz NF, Moriwaki K (2015) Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol 33:79–106

    Article  CAS  PubMed  Google Scholar 

  • Chandra D, Choy G, Tang DG (2007) Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem 282:31289–31301

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zheng C, Zhang Y, Chang YZ, Qian ZM, Shen X (2006) Heat shock protein 27 downregulates the transferrin receptor 1-mediated iron uptake. Int J Biochem Cell Biol 38:1402–1416

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Tavana O, Chu B et al (2017) NRF2 is a major target of ARF in p53-independent tumor suppression. Mol Cell 68:224–232.e224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cintron NS, Toft D (2006) Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. J Biol Chem 281:26235–26244

    Article  CAS  PubMed  Google Scholar 

  • Cole-Ezea P, Swan D, Shanley D, Hesketh J (2012) Glutathione peroxidase 4 has a major role in protecting mitochondria from oxidative damage and maintaining oxidative phosphorylation complexes in gut epithelial cells. Free Radic Biol Med 53:488–497

    Article  CAS  PubMed  Google Scholar 

  • Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8:61–70

    Article  CAS  PubMed  Google Scholar 

  • Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63

    Article  CAS  PubMed  Google Scholar 

  • de Jong WW, Leunissen JA, Voorter CE (1993) Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 10:103–126

    PubMed  Google Scholar 

  • De Maio A (2014) Extracellular Hsp70: export and function. Curr Protein Pept Sci 15:225–231

    Article  PubMed  CAS  Google Scholar 

  • Deane EE, Woo NY (2005) Growth hormone increases hsc70/hsp70 expression and protects against apoptosis in whole blood preparations from silver sea bream. Ann NY Acad Sci 1040:288–292

    Article  CAS  PubMed  Google Scholar 

  • Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  CAS  PubMed  Google Scholar 

  • Ding L, He S, Sun X (2014) HSP70 desensitizes osteosarcoma cells to baicalein and protects cells from undergoing apoptosis. Apoptosis 19:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon SJ, Patel DN, Welsch M et al (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. elife 3:e02523

    Article  PubMed  PubMed Central  Google Scholar 

  • Doll S, Proneth B, Tyurina YY et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98

    Article  CAS  PubMed  Google Scholar 

  • Du J, Wang T, Li Y et al (2018) DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med 131:356–369

    Article  CAS  PubMed  Google Scholar 

  • Espey MG, Miranda KM, Feelisch M et al (2000) Mechanisms of cell death governed by the balance between nitrosative and oxidative stress. Ann NY Acad Sci 899:209–221

    Article  CAS  PubMed  Google Scholar 

  • Fan CY, Lee S, Cyr DM (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan GC, Chu G, Mitton B, Song Q, Yuan Q, Kranias EG (2004) Small heat-shock protein Hsp20 phosphorylation inhibits beta-agonist-induced cardiac apoptosis. Circ Res 94:1474–1482

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Wirth AK, Chen D et al (2017) Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 6:e371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feige U, Polla BS (1994) Hsp70 – a multi-gene, multi-structure, multi-function family with potential clinical applications. Experientia 50:979–986

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fernandez MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM (2017) Hsp70 – a master regulator in protein degradation. FEBS Lett 591:2648–2660

    Article  CAS  PubMed  Google Scholar 

  • Friedmann Angeli JP, Schneider M, Proneth B et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Li J, Lee AS (2007) GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 67:3734–3740

    Article  CAS  PubMed  Google Scholar 

  • Fujiki K, Inamura H, Sugaya T, Matsuoka M (2019) Blockade of ALK4/5 signaling suppresses cadmium- and erastin-induced cell death in renal proximal tubular epithelial cells via distinct signaling mechanisms. Cell Death Differ. https://doi.org/10.1038/s41418-019-0307-8.

    Article  CAS  Google Scholar 

  • Galluzzi L, Bravo-San Pedro JM, Vitale I et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X (2016) Ferroptosis is an autophagic cell death process. Cell Res 26:1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Bai Y, Jia Y et al (2018) Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 503:1550–1556

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442

    Article  CAS  PubMed  Google Scholar 

  • Geng N, Shi BJ, Li SL et al (2018) Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci 22:3826–3836

    CAS  PubMed  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5194

    Article  CAS  PubMed  Google Scholar 

  • Gnanapradeepan K, Basu S, Barnoud T, Budina-Kolomets A, Kung CP, Murphy ME (2018) The p53 tumor suppressor in the control of metabolism and ferroptosis. Front Endocrinol (Lausanne) 9:124

    Article  Google Scholar 

  • Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19:4–19

    Article  CAS  PubMed  Google Scholar 

  • Gotoh T, Terada K, Mori M (2001) hsp70-DnaJ chaperone pairs prevent nitric oxide-mediated apoptosis in RAW 264.7 macrophages. Cell Death Differ 8:357–366

    Article  CAS  PubMed  Google Scholar 

  • Gotoh T, Terada K, Oyadomari S, Mori M (2004) hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 11:390–402

    Article  CAS  PubMed  Google Scholar 

  • Granato M, Lacconi V, Peddis M et al (2013) HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma. Cell Death Dis 4:e730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Ziesch A, Hocke S et al (2015) Overexpression of heat shock protein 27 (HSP27) increases gemcitabine sensitivity in pancreatic cancer cells through S-phase arrest and apoptosis. J Cell Mol Med 19:340–350

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Knowlton AA (2005) HSP60, Bax, apoptosis and the heart. J Cell Mol Med 9:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafizur RM, Yano M, Gotoh T, Mori M, Terada K (2004) Modulation of chaperone activities of Hsp70 and Hsp70-2 by a mammalian DnaJ/Hsp40 homolog, DjA4. J Biochem 135:193–200

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T, Yoshida S, Sugeno N, Kobayashi J, Aoki M (2017) DnaJ/Hsp40 family and Parkinson’s disease. Front Neurosci 11:743

    Article  PubMed  Google Scholar 

  • Havasi A, Li Z, Wang Z et al (2008) Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 283:12305–12313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez MP, Chadli A, Toft DO (2002) HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J Biol Chem 277:11873–11881

    Article  CAS  PubMed  Google Scholar 

  • Hou W, Xie Y, Song X et al (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:1425–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu WF, Gong L, Cao Z et al (2012) alphaA- and alphaB-crystallins interact with caspase-3 and Bax to guard mouse lens development. Curr Mol Med 12:177–187

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Wei JN, Peng WX et al (2009) The association of CaM and Hsp70 regulates S-phase arrest and apoptosis in a spatially and temporally dependent manner in human cells. Cell Stress Chaperones 14:343–353

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Lin KH, Yu JS et al (2018) Targeting HSP60 by subcutaneous injections of jetPEI/HSP60-shRNA destabilizes cytoplasmic survivin and inhibits hepatocellular carcinoma growth. Mol Carcinog 57:1087–1101

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen AV, Silke J (2016) The importance of being chaperoned: HSP90 and necroptosis. Cell Chem Biol 23:205–207

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen AV, Lowes KN, Tanzer MC et al (2016) HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis 7:e2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jee H (2016) Size dependent classification of heat shock proteins: a mini-review. J Exerc Rehabil 12:255–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Jheng HF, Tsai PJ, Chuang YL et al (2015) Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis Model Mech 8:1311–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang B, Liang P, Deng G, Tu Z, Liu M, Xiao X (2011) Increased stability of Bcl-2 in HSP70-mediated protection against apoptosis induced by oxidative stress. Cell Stress Chaperones 16:143–152

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Kon N, Li T et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan VE, Mao G, Qu F et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90

    Article  CAS  PubMed  Google Scholar 

  • Kamradt MC, Chen F, Sam S, Cryns VL (2002) The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277:38731–38736

    Article  CAS  PubMed  Google Scholar 

  • Kamradt MC, Lu M, Werner ME et al (2005) The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem 280:11059–11066

    Article  CAS  PubMed  Google Scholar 

  • Kang R, Tang D (2017) Autophagy and ferroptosis – what’s the connection? Curr Pathobiol Rep 5:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang R, Zhu S, Zeh HJ, Klionsky DJ, Tang D (2018a) BECN1 is a new driver of ferroptosis. Autophagy 14:2173–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang R, Zeng L, Zhu S et al (2018b) Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24:97–108.e104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang R, Kroemer G, Tang D (2019) The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med 133:162–168

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiessling R, Gronberg A, Ivanyi J et al (1991) Role of hsp60 during autoimmune and bacterial inflammation. Immunol Rev 121:91–111

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Ryu J, Kim JE (2019) CCAR2/DBC1 and Hsp60 positively regulate expression of survivin in neuroblastoma cells. Int J Mol Sci 20:131

    Article  PubMed Central  CAS  Google Scholar 

  • King FW, Wawrzynow A, Hohfeld J, Zylicz M (2001) Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J 20:6297–6305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirstein J, Moliere N, Dougan DA, Turgay K (2009) Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat Rev Microbiol 7:589–599

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knox C, Luke GA, Blatch GL, Pesce ER (2011) Heat shock protein 40 (Hsp40) plays a key role in the virus life cycle. Virus Res 160:15–24

    Article  CAS  PubMed  Google Scholar 

  • Kolb JP, Oguin TH 3rd, Oberst A, Martinez J (2017) Programmed cell death and inflammation: winter is coming. Trends Immunol 38:705–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyasu S, Nishida E, Kadowaki T et al (1986) Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. Proc Natl Acad Sci USA 83:8054–8058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon MY, Park E, Lee SJ, Chung SW (2015) Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6:24393–24403

    PubMed  PubMed Central  Google Scholar 

  • Laskowska E, Matuszewska E, Kuczynska-Wisnik D (2010) Small heat shock proteins and protein-misfolding diseases. Curr Pharm Biotechnol 11:146–157

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Lee DH, Choudry HA, Bartlett DL, Lee YJ (2018) Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis. Mol Cancer Res 16:1073–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Lee DH, Jeong SY et al (2019) Ferroptosis-inducing agents enhance TRAIL-induced apoptosis through upregulation of death receptor 5. J Cell Biochem 120:928–939

    Article  CAS  PubMed  Google Scholar 

  • Li X, Luo R, Jiang R et al (2013) The role of the Hsp90/Akt pathway in myocardial calpain-induced caspase-3 activation and apoptosis during sepsis. BMC Cardiovasc Disord 13:8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li D, Li C, Li L et al (2016) Natural product Kongensin A is a non-canonical HSP90 inhibitor that blocks RIP3-dependent necroptosis. Cell Chem Biol 23:257–266

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Kim SC, Wang Y et al (2007) HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293:H2238–H2247

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wang K (2019) The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol Int. https://doi.org/10.1002/cbin.11121.

  • Matsushita M, Freigang S, Schneider C, Conrad M, Bornkamm GW, Kopf M (2015) T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J Exp Med 212:555–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehlen P, Schulze-Osthoff K, Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271:16510–16514

    Article  CAS  PubMed  Google Scholar 

  • Minami Y, Kiyoi H, Yamamoto Y et al (2002) Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia 16:1535–1540

    Article  CAS  PubMed  Google Scholar 

  • Mishra RC, Grover A (2016) ClpB/Hsp100 proteins and heat stress tolerance in plants. Crit Rev Biotechnol 36:862–874

    Article  CAS  PubMed  Google Scholar 

  • Mitra A, Shevde LA, Samant RS (2009) Multi-faceted role of HSP40 in cancer. Clin Exp Metastasis 26:559–567

    Article  CAS  PubMed  Google Scholar 

  • Morrow G, Tanguay RM (2012) Small heat shock protein expression and functions during development. Int J Biochem Cell Biol 44:1613–1621

    Article  CAS  PubMed  Google Scholar 

  • Mortaz E, Redegeld FA, Nijkamp FP, Wong HR, Engels F (2006) Acetylsalicylic acid-induced release of HSP70 from mast cells results in cell activation through TLR pathway. Exp Hematol 34:8–18

    Article  CAS  PubMed  Google Scholar 

  • Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8:105–137

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Minegishi H (2013) HSP60 as a drug target. Curr Pharm Des 19:441–451

    Article  CAS  PubMed  Google Scholar 

  • Pace A, Barone G, Lauria A et al (2013) Hsp60, a novel target for antitumor therapy: structure-function features and prospective drugs design. Curr Pharm Des 19:2757–2764

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Saleh A, Nakazawa A et al (2000) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19:4310–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesce ER, Blatch GL (2014) Plasmodial Hsp40 and Hsp70 chaperones: current and future perspectives. Parasitology 141:1167–1176

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Qi S, Gui L, Shen L, Feng Z (2016) Daphnetin protects oxidative stress-induced neuronal apoptosis via regulation of MAPK signaling and HSP70 expression. Oncol Lett 12:1959–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570

    Article  CAS  PubMed  Google Scholar 

  • Quintana FJ, Cohen IR (2011) The HSP60 immune system network. Trends Immunol 32:89–95

    Article  CAS  PubMed  Google Scholar 

  • Ran Q, Van Remmen H, Gu M et al (2003) Embryonic fibroblasts from Gpx4+/− mice: a novel model for studying the role of membrane peroxidation in biological processes. Free Radic Biol Med 35:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Ran Q, Liang H, Gu M et al (2004) Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J Biol Chem 279:55137–55146

    Article  CAS  PubMed  Google Scholar 

  • Ran Q, Gu M, Van Remmen H, Strong R, Roberts JL, Richardson A (2006) Glutathione peroxidase 4 protects cortical neurons from oxidative injury and amyloid toxicity. J Neurosci Res 84:202–208

    Article  CAS  PubMed  Google Scholar 

  • Rosano GL, Bruch EM, Colombo CV, Ceccarelli EA (2012) Toward a unified model of the action of CLP/HSP100 chaperones in chloroplasts. Plant Signal Behav 7:672–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryter SW, Kim HP, Hoetzel A et al (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89

    Article  CAS  PubMed  Google Scholar 

  • Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S (1999) Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J 18:2040–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarangi U, Singh MK, Abhijnya KV et al (2013) Hsp60 chaperonin acts as barrier to pharmacologically induced oxidative stress mediated apoptosis in tumor cells with differential stress response. Drug Target Insights 7:35–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360

    Article  CAS  PubMed  Google Scholar 

  • Schwartz H, Scroggins B, Zuehlke A et al (2015) Combined HSP90 and kinase inhibitor therapy: insights from The Cancer Genome Atlas. Cell Stress Chaperones 20:729–741

    Article  PubMed  PubMed Central  Google Scholar 

  • Seiler A, Schneider M, Forster H et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8:237–248

    Article  CAS  PubMed  Google Scholar 

  • Sheng L, Tang T, Liu Y et al (2018) Inducible HSP70 antagonizes cisplatininduced cell apoptosis through inhibition of the MAPK signaling pathway in HGC27 cells. Int J Mol Med 42:2089–2097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin D, Kim EH, Lee J, Roh JL (2018) Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med 129:454–462

    Article  CAS  PubMed  Google Scholar 

  • Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1–20

    Article  CAS  PubMed  Google Scholar 

  • Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20:175–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solarova Z, Mojzis J, Solar P (2015) Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (review). Int J Oncol 46:907–926

    CAS  PubMed  Google Scholar 

  • Song X, Zhu S, Chen P et al (2018) AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity. Curr Biol 28:2388–2399 e2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65:363–366

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz AR, Livingstone AM, Mohseni N, Mosser DD (2009) Regulation of heat-induced apoptosis by Mcl-1 degradation and its inhibition by Hsp70. Cell Death Differ 16:638–647

    Article  CAS  PubMed  Google Scholar 

  • Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Ou Z, Xie M et al (2015) HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34:5617–5625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Ou Z, Chen R et al (2016a) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63:173–184

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Niu X, Chen R et al (2016b) Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64:488–500

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhai L, Ma S et al (2018) Down-regulation of RIP3 potentiates cisplatin chemoresistance by triggering HSP90-ERK pathway mediated DNA repair in esophageal squamous cell carcinoma. Cancer Lett 418:97–108

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Kang R, Livesey KM et al (2011) High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab 13:701–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telorack M, Meyer M, Ingold I, Conrad M, Bloch W, Werner S (2016) A glutathione-Nrf2-thioredoxin cross-talk ensures keratinocyte survival and efficient wound repair. PLoS Genet 12:e1005800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torti SV, Torti FM (2013) Iron and cancer: more ore to be mined. Nat Rev Cancer 13:342–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trichilis A, Wroblewski J (1997) Expression of p53 and hsp70 in relation to apoptosis during Meckel’s cartilage development in the mouse. Anat Embryol (Berl) 196:107–113

    Article  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  CAS  PubMed  Google Scholar 

  • van Eden W, Anderton SM, van der Zee R, Prakken AB, Rijkers GT (1995) Specific immunity as a critical factor in the control of autoimmune arthritis: the example of hsp60 as an ancillary and protective autoantigen. Scand J Rheumatol Suppl 101:141–145

    Article  PubMed  Google Scholar 

  • Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254

    Article  CAS  PubMed  Google Scholar 

  • Velichko AK, Markova EN, Petrova NV, Razin SV, Kantidze OL (2013) Mechanisms of heat shock response in mammals. Cell Mol Life Sci 70:4229–4241

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve TS, Ma X, Sun Y, Oulton MM, Oliver AE, MacRae TH (2006) Inhibition of apoptosis by p26: implications for small heat shock protein function during artemia development. Cell Stress Chaperones 11:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker VE, Wong MJ, Atanasiu R, Hantouche C, Young JC, Shrier A (2010) Hsp40 chaperones promote degradation of the HERG potassium channel. J Biol Chem 285:3319–3329

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ye R, Barron E et al (2010) Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ 17:488–498

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kim SM, Trnka MJ, Liu Y, Burlingame AL, Correia MA (2015) Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes. J Biol Chem 290:3308–3332

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ, Chang SY, Wu Q et al (2016) The protective role of mitochondrial ferritin on erastin-induced ferroptosis. Front Aging Neurosci 8:308

    PubMed  PubMed Central  Google Scholar 

  • Webster KA (2003) Serine phosphorylation and suppression of apoptosis by the small heat shock protein alphaB-crystallin. Circ Res 92:130–132

    Article  CAS  PubMed  Google Scholar 

  • Welch WJ (1991) The role of heat-shock proteins as molecular chaperones. Curr Opin Cell Biol 3:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Welsh MJ, Gaestel M (1998) Small heat-shock protein family: function in health and disease. Ann NY Acad Sci 851:28–35

    Article  CAS  PubMed  Google Scholar 

  • Wen KW, Damania B (2010) Hsp90 and Hsp40/Erdj3 are required for the expression and anti-apoptotic function of KSHV K1. Oncogene 29:3532–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82-83:969–974

    Article  CAS  PubMed  Google Scholar 

  • Wu KC, Cui JY, Klaassen CD (2011) Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol Sci 123:590–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Geng Y, Lu X et al (2019) Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA 116:2996–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xanthoudakis S, Roy S, Rasper D et al (1999) Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J 18:2049–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Kang R, Sun X et al (2015) Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 11:28–45

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Hou W, Song X et al (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Zhu S, Song X et al (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20:1692–1704

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wang D, Ma W (2014) Cell death in human health and disease. Biomed Res Int 2014:243017

    PubMed  PubMed Central  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15:234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 113:E4966–E4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Liu J, Zhu S, Kroemer G, Klionsky D, Lotze M, Zeh H, Kang R, Tang D (2019) Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv 5:aaw2238

    Article  Google Scholar 

  • Yuan H, Li X, Zhang X, Kang R, Tang D (2016a) CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun 478:838–844

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Li X, Zhang X, Kang R, Tang D (2016b) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478:1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Zare N, Motamedi F, Digaleh H, Khodagholi F, Maghsoudi N (2015) Collaboration of geldanamycin-activated P70S6K and Hsp70 against beta-amyloid-induced hippocampal apoptosis: an approach to long-term memory and learning. Cell Stress Chaperones 20:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LH, Zhang X (2010) Roles of GRP78 in physiology and cancer. J Cell Biochem 110:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Luo D, Miao R et al (2005) Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene 24:3954–3963

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Min X, Li C et al (2010) Involvement of reductive stress in the cardiomyopathy in transgenic mice with cardiac-specific overexpression of heat shock protein 27. Hypertension 55:1412–1417

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang X, Shan P, Hunt CR, Pandita TK, Lee PJ (2013) A protective Hsp70-TLR4 pathway in lethal oxidant lung injury. J Immunol 191:1393–1403

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang L, Zhou L, Lei Y, Zhang Y, Huang C (2018) Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol 18:30895–30904

    Google Scholar 

  • Zhao XM, Chen Z, Zhao JB et al (2016) Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. Cell Death Dis 7:e2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2019) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 19:30006–30009

    Google Scholar 

  • Zhu S, Zhang Q, Sun X et al (2017) HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res 77:2064–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolkiewski M, Zhang T, Nagy M (2012) Aggregate reactivation mediated by the Hsp100 chaperones. Arch Biochem Biophys 520:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuiderweg ER, Hightower LE, Gestwicki JE (2017) The remarkable multivalency of the Hsp70 chaperones. Cell Stress Chaperones 22:173–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We apologize to the researchers who were not referenced due to space limitations. We thank Dave Primm (Department of Surgery, University of Texas Southwestern Medical Center) for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Kang or Daolin Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, R., Tang, D. (2019). Heat Shock Proteins: Endogenous Modulators of Ferroptosis. In: Tang, D. (eds) Ferroptosis in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-26780-3_4

Download citation

Publish with us

Policies and ethics