Skip to main content

MISSIM: Improved miRNA-Disease Association Prediction Model Based on Chaos Game Representation and Broad Learning System

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11645))

Included in the following conference series:

Abstract

MicroRNAs (miRNAs) play critical roles in the development and progression of various diseases. However, traditional experimental approaches are difficult to detect potential human miRNA-disease associations from the vast amount of biological data. Therefore, computational techniques could be of significant value. In this work, we proposed a miRNA sequence similarity calculation model (MISSIM) to large-scale predict miRNA-disease associations by combined Chaos Game Representation (CGR) with Broad Learning System (BLS). In the five-cross-validation experiment, MISSIM achieved ACC of 0.8424 on the HMDD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros, V.: The functions of animal microRNAs. Nature 431(7006), 350 (2004)

    Article  Google Scholar 

  2. An, J.Y., et al.: Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix. Oncotarget 7(50), 82440–82449 (2016)

    Article  Google Scholar 

  3. Bao, W., You, Z.-H., Huang, D.-S.: CIPPN: computational identification of protein pupylation sites by using neural network. Oncotarget 8(65), 108867 (2017)

    Article  Google Scholar 

  4. An, J.Y., et al.: Improving protein–protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model. Protein Sci. 25(10), 1825–1833 (2016)

    Article  Google Scholar 

  5. Chan, K.C., You, Z.-H.: Large-scale prediction of drug-target interactions from deep representations. In: 2016 International Joint Conference on Neural Networks (IJCNN). IEEE (2016)

    Google Scholar 

  6. An, J.Y., et al.: Using the relevance vector machine model combined with local phase quantization to predict protein-protein interactions from protein sequences. Biomed. Res. Int. 2016(6868), 1–9 (2016)

    Article  Google Scholar 

  7. Chen, X., et al.: DRMDA: deep representations-based miRNA–disease association prediction. J. Cell Mol. Med. 22(1), 472–485 (2018)

    Article  Google Scholar 

  8. An, J.Y., et al.: RVMAB: using the relevance vector machine model combined with average blocks to predict the interactions of proteins from protein sequences. Int. J. Mol. Sci. 17(5), 757 (2016)

    Article  Google Scholar 

  9. Chen, W., et al.: Environment-map-free robot navigation based on wireless sensor networks. In: 2007 International Conference on Information Acquisition. ICIA 2007. IEEE (2007)

    Google Scholar 

  10. An, J.Y., et al.: Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. Mol. BioSyst. 12(12), 3702 (2016)

    Article  Google Scholar 

  11. Chen, W., et al.: Design and implementation of wireless sensor network for robot navigation. Int. J. Inf. Acquis. 4(01), 77–89 (2007)

    Article  Google Scholar 

  12. You, Z., et al.: A localization algorithm nin wireless sensor networks using a mobile beacon node. In: 2007 International Conference on Information Acquisition. ICIA 2007. IEEE (2007)

    Google Scholar 

  13. Huang, Y.-A., et al.: EPMDA: an expression-profile based computational model for microRNA-disease association prediction. Oncotarget 8(50), 87033 (2017)

    Google Scholar 

  14. You, Z., Lei, Y., Ji, Z., Zhu, Z.: A novel approach to modelling protein-protein interaction networks. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012. LNCS, vol. 7332, pp. 49–57. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31020-1_7

    Chapter  Google Scholar 

  15. Ji, Z., et al.: Predicting dynamic deformation of retaining structure by LSSVR-based time series method. Neurocomputing 137, 165–172 (2014)

    Article  Google Scholar 

  16. You, Z., Ming, Z., Niu, B., Deng, S., Zhu, Z.: A SVM-based system for predicting protein-protein interactions using a novel representation of protein sequences. In: Huang, D.-S., Bevilacqua, V., Figueroa, J.C., Premaratne, P. (eds.) ICIC 2013. LNCS, vol. 7995, pp. 629–637. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39479-9_73

    Chapter  Google Scholar 

  17. Huang, Y.-A., et al.: Construction of reliable protein–protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing 218, 131–138 (2016)

    Article  Google Scholar 

  18. You, Z., Wang, S., Gui, J., Zhang, S.: A novel hybrid method of gene selection and its application on tumor classification. In: Huang, D.-S., Wunsch, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 1055–1068. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85984-0_127

    Chapter  Google Scholar 

  19. Huang, Z.-A., et al.: PBHMDA: path-based human microbe-disease association prediction. Front. Microbiol. 8, 233 (2017)

    Google Scholar 

  20. Lei, Y.-K., et al.: Increasing reliability of protein interactome by fast manifold embedding. Pattern Recogn. Lett. 34(4), 372–379 (2013)

    Article  Google Scholar 

  21. Chen, X., et al.: IRWRLDA: improved random walk with restart for lncRNA-disease association prediction. Oncotarget 7(36), 57919–57931 (2016)

    Google Scholar 

  22. Li, S., et al.: Distributed winner-take-all in dynamic networks. IEEE Trans. Autom. Control 62(2), 577–589 (2017)

    Article  MathSciNet  Google Scholar 

  23. Luo, X., et al.: An efficient second-order approach to factorize sparse matrices in recommender systems. IEEE Trans. Industr. Inf. 11(4), 946–956 (2015)

    Article  MathSciNet  Google Scholar 

  24. Wang, Y.-B., et al.: Improving prediction of self-interacting proteins using stacked sparse auto-encoder with PSSM profiles. Int. J. Biol. Sci. 14(8), 983–991 (2018)

    Article  Google Scholar 

  25. You, Z.-H., et al.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47(3), 731–743 (2017)

    Article  Google Scholar 

  26. Li, J.-Q., et al.: PSPEL: in silico prediction of self-interacting proteins from amino acids sequences using ensemble learning. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 14(5), 1165–1172 (2017)

    Article  Google Scholar 

  27. Li, Z.-W., et al.: Highly accurate prediction of protein-protein interactions via incorporating evolutionary information and physicochemical characteristics. Int. J. Mol. Sci. 17(9), 1396 (2016)

    Article  Google Scholar 

  28. Luo, X., et al.: Incorporation of efficient second-order solvers into latent factor models for accurate prediction of missing QoS data. IEEE Trans. Cybern. 48(4), 1216–1228 (2018)

    Article  Google Scholar 

  29. Qu, J., et al.: In silico prediction of small molecule-miRNA associations based on HeteSim algorithm. Mol. Therapy-Nucleic Acids (2018)

    Google Scholar 

  30. Song, X.-Y., et al.: An ensemble classifier with random projection for predicting protein-protein interactions using sequence and evolutionary information. Appl. Sci. 8(1), 89 (2018)

    Article  MathSciNet  Google Scholar 

  31. Wang, L., et al.: Combining high speed ELM learning with a deep convolutional neural network feature encoding for predicting protein-RNA interactions. IEEE/ACM Trans. Comput. Biol. Bioinform. (2018)

    Google Scholar 

  32. Wang, Y., et al.: PCVMZM: using the probabilistic classification vector machines model combined with a zernike moments descriptor to predict protein-protein interactions from protein sequences. Int. J. Mol. Sci. 18(5), 1029 (2017)

    Article  Google Scholar 

  33. Wen, Y.-T., et al.: Prediction of protein-protein interactions by label propagation with protein evolutionary and chemical information derived from heterogeneous network. J. Theor. Biol. 430, 9–20 (2017)

    Article  Google Scholar 

  34. Yu, H.-J., You, Z.-H.: Comparison of DNA truncated barcodes and full-barcodes for species identification. In: Huang, D.-S., Zhang, X., Reyes García, C.A., Zhang, L. (eds.) ICIC 2010. LNCS (LNAI), vol. 6216, pp. 108–114. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14932-0_14

    Chapter  Google Scholar 

  35. Zhu, H.-J., et al.: DroidDet: effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing 272, 638–646 (2018)

    Article  Google Scholar 

  36. Li, Y., et al.: HMDD v2. 0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 42(D1), D1070–D1074 (2013)

    Article  Google Scholar 

  37. Wang, D., et al.: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13), 1644–1650 (2010)

    Article  Google Scholar 

  38. Jeffrey, H.J.: Chaos game representation of gene structure. Nucleic Acids Res. 18(8), 2163–2170 (1990)

    Article  Google Scholar 

  39. Sun, X., et al.: Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination. Oncotarget 7(39), 63995 (2016)

    Article  Google Scholar 

  40. Wang, Y.B., et al.: Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol. BioSyst. 13(7), 1336–1344 (2017)

    Article  Google Scholar 

  41. Wang, Y.-B., et al.: Prediction of protein self-interactions using stacked long short-term memory from protein sequences information. BMC Syst. Biol. 12(8), 129 (2018)

    Article  Google Scholar 

  42. You, Z.-H., et al.: A MapReduce based parallel SVM for large-scale predicting protein-protein interactions. Neurocomputing 145, 37–43 (2014)

    Article  Google Scholar 

  43. Zhang, S., Wu, X., You, Z.: Jaccard distance based weighted sparse representation for coarse-to-fine plant species recognition. PLoS ONE 12(6), e0178317 (2017)

    Article  Google Scholar 

  44. Zhu, L., You, Z.-H., Huang, D.-S.: Increasing the reliability of protein–protein interaction networks via non-convex semantic embedding. Neurocomputing 121, 99–107 (2013)

    Article  Google Scholar 

  45. Chen, X., et al.: Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 18(4), 558 (2016)

    Google Scholar 

  46. Gao, Z.G., et al.: Ens-PPI: a novel ensemble classifier for predicting the interactions of proteins using autocovariance transformation from PSSM. Biomed. Res. Int. 2016(4), 1–8 (2016)

    Google Scholar 

  47. Li, S., et al.: Inverse-free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46(5), 1229 (2016)

    Article  Google Scholar 

  48. You, Z.-H., et al.: Large-scale protein-protein interactions detection by integrating big biosensing data with computational model. Biomed. Res. Int. 2014, 1–9 (2014)

    Article  Google Scholar 

  49. You, Z.-H., et al.: A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinform. 11(1), 343 (2010)

    Article  Google Scholar 

  50. Chen, X., et al.: MicroRNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 20, 515–539 (2017)

    Article  Google Scholar 

  51. Huang, Y.-A., et al.: Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition. BMC Syst. Biol. 10(4), 120 (2016)

    Article  Google Scholar 

  52. Li, L.-P., et al.: PCLPred: a bioinformatics method for predicting protein-protein interactions by combining relevance vector machine model with low-rank matrix approximation. Int. J. Mol. Sci. 19(4), 1029 (2018)

    Article  Google Scholar 

  53. Luo, X., et al.: An incremental-and-static-combined scheme for matrix-factorization-based collaborative filtering. IEEE Trans. Autom. Sci. Eng. 13(1), 333–343 (2016)

    Article  Google Scholar 

  54. Wang, L., et al.: Using two-dimensional principal component analysis and rotation forest for prediction of protein-protein interactions. Sci. Rep. 8(1), 12874 (2018)

    Article  Google Scholar 

  55. You, Z.-H., et al.: A novel method to predict protein-protein interactions based on the information of protein sequence. In: 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE (2012)

    Google Scholar 

  56. Zhang, S., et al.: Fusion of superpixel, expectation maximization and PHOG for recognizing cucumber diseases. Comput. Electron. Agric. 140, 338–347 (2017)

    Article  Google Scholar 

  57. Chen, C.P., Liu, Z.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 10–24 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, K., You, ZH., Wang, L., Li, YR., Wang, YB., Jiang, HJ. (2019). MISSIM: Improved miRNA-Disease Association Prediction Model Based on Chaos Game Representation and Broad Learning System. In: Huang, DS., Huang, ZK., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science(), vol 11645. Springer, Cham. https://doi.org/10.1007/978-3-030-26766-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26766-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26765-0

  • Online ISBN: 978-3-030-26766-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics