Skip to main content

Predicting of Drug-Disease Associations via Sparse Auto-Encoder-Based Rotation Forest

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11645))

Included in the following conference series:

Abstract

Computational drug repositioning, designed to identify new indications for existing drugs, significantly reducing the cost and time involved in drug development. Confirming the association between drugs and disease is a critical process in drug development. At present, the most advanced method is to apply the recommendation system or matrix decomposition method to predict the similarity between drugs and diseases. In this paper, the association between drugs and diseases is integrated and a novel computational method based on sparse auto-encoder combined with rotation forest (SAEROF) is proposed to predict new drug indications. First, we constructed a drug-disease similarity based on drug-disease association and integrated it into sparse auto-encoder to obtain the final drug-disease similarity. Then, we adopt a rotation forest algorithm to predicted scores for unknown drug–disease pairs. Cross validation and independent test results show that this model is better than the existing model and has reliable prediction performance. In addition, the case study of two diseases further proves the practical value of this method, and the results obtained can be found in CTD database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandrasekaran, S.N., Koutsoukas, A., Huan, J.: Investigating multiview and multitask learning frameworks for predicting drug-disease associations. In: ACM International Conference on Bioinformatics (2016)

    Google Scholar 

  2. Chen, H., Peng, W., Zhang, Z.: miRDDCR: a miRNA-based method to comprehensively infer drug-disease causal relationships. Sci. Rep. 7(1), 15921 (2017)

    Article  Google Scholar 

  3. Yang, J., et al.: Drug-disease association and drug-repositioning predictions in complex diseases using causal inference-probabilistic matrix factorization. J. Chem. Inf. Model. 54(9), 2562–2569 (2014)

    Article  Google Scholar 

  4. Liang, X., et al.: LRSSL: predict and interpret drug-disease associations based on data integration using sparse subspace learning. Bioinformatics 33(8), 1187–1196 (2017). (p. btw770)

    Google Scholar 

  5. Zhang, W., et al.: Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network. Methods 145, 51–59 (2018). (S1046202318300045)

    Article  Google Scholar 

  6. Wu, G., Liu, J., Wang, C.: Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration. BMC Med. Genomics 10(Suppl 5), 79 (2017)

    Article  Google Scholar 

  7. Lu, L., Yu, H.: DR2DI: a powerful computational tool for predicting novel drug-disease associations. J. Comput. Aided Mol. Des. 32(5), 633–642 (2018)

    Article  MathSciNet  Google Scholar 

  8. Deng, J., et al.: Sparse autoencoder-based feature transfer learning for speech emotion recognition. In: Affective Computing & Intelligent Interaction (2013)

    Google Scholar 

  9. Xu, J., et al.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119 (2016)

    Article  MathSciNet  Google Scholar 

  10. Mattingly, C.J., et al.: The comparative toxicogenomics database (CTD): a resource for comparative toxicological studies. J. Exp. Zool. Part A Ecol. Genet. Physiol. 111(6), 793–795 (2003)

    Google Scholar 

  11. Gottlieb, A., et al.: PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7(1), 496 (2014)

    Article  Google Scholar 

  12. Luo, H., et al.: Drug repositioning based on comprehensive similarity measures and bi-random walk algorithm. Bioinformatics 32(17), 2664 (2016)

    Article  Google Scholar 

  13. Wishart, D.S., et al.: DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2017). (Database issue)

    Article  Google Scholar 

  14. Ada, H., et al.: Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33(1), 514–517 (2005)

    Google Scholar 

  15. Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

  16. Steinbeck, C., et al.: The chemistry development kit (CDK): an open-source Java library for chemo- and bioinformatics. Cheminform 34(21), 493–500 (2003)

    Article  Google Scholar 

  17. Vanunu, O., et al.: Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6(1), e1000641 (2010)

    Article  MathSciNet  Google Scholar 

  18. Nepusz, T., Yu, H., Paccanaro, A.J.N.M.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9(5), 471–472 (2012)

    Article  Google Scholar 

  19. Van Driel, M.A., et al.: A text-mining analysis of the human phenome. Eur. J. Hum. Genet. 14(5), 535–542 (2006)

    Article  Google Scholar 

  20. Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88(3), 265–266 (2000)

    Google Scholar 

  21. You, Z.H., Li, X., Chan, K.C.: An improved sequence-based prediction protocol for protein-protein interactions using amino acids substitution matrix and rotation forest ensemble classifiers. Neurocomputing 228, 277–282 (2017)

    Article  Google Scholar 

  22. Chen, X., et al.: GIMDA: graphlet interaction-based MiRNA-disease association prediction. J. Cell Mol. Med. 22(3), 1548–1561 (2017)

    Article  Google Scholar 

  23. Chen, X., et al.: WBSMDA: within and between score for MiRNA-disease association prediction. Sci. Rep. 6, 21106 (2016)

    Article  Google Scholar 

  24. Zhao, H., et al.: Prediction of microRNA-disease associations based on distance correlation set. BMC Bioinform. 19(1), 141 (2018)

    Article  MathSciNet  Google Scholar 

  25. Manchanda, S., Anand, A.: Representation learning of drug and disease terms for drug repositioning. In: IEEE International Conference on Cybernetics (2017)

    Google Scholar 

  26. Zeng, X., et al.: Predict the relationship between gene and large yellow croaker’s economic traits. Molecules 22(11), 1978 (2017)

    Article  Google Scholar 

  27. Chen, X., Cheng, J.-Y., Yin, J.: Predicting microRNA-disease associations using bipartite local models and hubness-aware regression. RNA Biol. 15(9), 1192–1205 (2018)

    Article  Google Scholar 

  28. You, Z.H., et al.: Large-scale protein-protein interactions detection by integrating big biosensing data with computational model. Biomed. Res. Int. 2014(2), 598129 (2014)

    Google Scholar 

  29. Chen, X., et al.: Novel human miRNA-disease association inference based on random forest. Mol. Therapy-Nucleic Acids 13, 568–579 (2018)

    Article  Google Scholar 

  30. Chen, X., et al.: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction. PLoS Comput. Biol. 14(8), e1006418 (2018)

    Article  Google Scholar 

  31. Chen, X., et al.: DRMDA: deep representations-based miRNA-disease association prediction. J. Cell. Mol. Med. 22(1), 472–485 (2017)

    Article  Google Scholar 

  32. Peng, L.-H., et al.: HNMDA: heterogeneous network-based miRNA–disease association prediction. Mol. Genet. Genomics 293, 983–995 (2018)

    Article  Google Scholar 

  33. Wang, L., et al.: Combining high speed ELM learning with a deep convolutional neural network feature encoding for predicting protein-RNA interactions. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1 (2018)

    Google Scholar 

  34. Sun, W., et al.: A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 89, 171–178 (2016). (ISFA)

    Article  Google Scholar 

  35. Te, J., et al.: Partial discharge pattern recognition algorithm based on sparse self-coding and extreme learning machine. In: 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE (2018)

    Google Scholar 

  36. Wang, L., et al.: RFDT: a rotation forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information. Curr. Protein Pept. Sci. 19, 445–454 (2018)

    Article  Google Scholar 

  37. Wang, L., et al.: An improved efficient rotation forest algorithm to predict the interactions among proteins. Soft. Comput. 22(17), 1–9 (2018)

    Article  Google Scholar 

  38. Rodríguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, HJ., You, ZH., Zheng, K., Chen, ZH. (2019). Predicting of Drug-Disease Associations via Sparse Auto-Encoder-Based Rotation Forest. In: Huang, DS., Huang, ZK., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science(), vol 11645. Springer, Cham. https://doi.org/10.1007/978-3-030-26766-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26766-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26765-0

  • Online ISBN: 978-3-030-26766-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics