Skip to main content

Real Implementation of an Active Fault Tolerant Control Based on Super Twisting Technique for a Robot Manipulator

  • Conference paper
  • First Online:
Book cover Intelligent Computing Methodologies (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11645))

Included in the following conference series:

  • 1769 Accesses

Abstract

In this paper, real implementation of an active fault-tolerant control for a robot manipulator based on the combination of an external linear observer and the super-twisting algorithm is proposed. This active fault-tolerant scheme uses an external linear observer to identify faults. Then, the fault information is used to compensate the uncertainties/disturbance and faults with the super twisting controller. Finally, the effectiveness of proposed control is verified by simulation and implementation for a 3-DOF robot manipulator. The results were illustrated that the proposed control can tolerate the relatively bigger faults due to the design of the observer and then show the better performances than the conventional super-twisting controller does.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castaldi, P., Mimmo, N., Simani, S.: Differential geometry based active fault tolerant control for aircraft. Control Eng. Pract. 32, 227–235 (2014)

    Article  Google Scholar 

  2. Badihi, H., Zhang, Y., Hong, H.: Wind turbine fault diagnosis and fault-tolerant torque load control against actuator faults. IEEE Trans. Control Syst. Technol. 23, 1351–1372 (2015)

    Article  Google Scholar 

  3. Liu, Z., Liu, J., He, W.: Robust adaptive fault tolerant control for a linear cascaded ODE-beam system. Automatica 98, 42–50 (2018)

    Article  MathSciNet  Google Scholar 

  4. Stefanovski, J.D.: Passive fault tolerant perfect tracking with additive faults. Automatica 87, 432–436 (2018)

    Article  MathSciNet  Google Scholar 

  5. Benosman, M., Lum, K.-Y.: Passive actuators’ fault-tolerant control for affine nonlinear systems. IEEE Trans. Control Syst. Technol. 18, 152–163 (2010)

    Article  Google Scholar 

  6. Niemann, H., Stoustrup, J.: Passive fault tolerant control of a double inverted pendulum-a case study. Control Eng. Pract. 13, 1047–1059 (2005)

    Article  Google Scholar 

  7. Gao, Z., Ding, S.X., Ma, Y.: Robust fault estimation approach and its application in vehicle lateral dynamic systems. Optim. Control Appl. Methods 28, 143–156 (2007)

    Article  MathSciNet  Google Scholar 

  8. Sadeghzadeh, I., Mehta, A., Chamseddine, A., Zhang, Y.: Active fault tolerant control of a quadrotor UAV based on gainscheduled PID control. In: 2012 25th IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), pp. 1–4 (2012)

    Google Scholar 

  9. Van, M., Ge, S.S., Ren, H.: Robust fault-tolerant control for a class of second-order nonlinear systems using an adaptive third-order sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. 47, 221–228 (2017)

    Google Scholar 

  10. Bahrami, M., Naraghi, M., Zareinejad, M.: Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems. ISA Trans. 76, 235–245 (2018)

    Article  Google Scholar 

  11. Edwards, C., Spurgeon, S.K., Patton, R.J.: Sliding mode observers for fault detection and isolation. Automatica 36, 541–553 (2000)

    Article  MathSciNet  Google Scholar 

  12. Wen, S., Chen, M.Z.Q., Zeng, Z., Huang, T., Li, C.: Adaptive neural-fuzzy sliding-mode fault-tolerant control for uncertain nonlinear systems. IEEE Trans. Syst. Man. Cybern. Syst. 47, 2268–2278 (2017)

    Article  Google Scholar 

  13. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58, 1247–1263 (1993)

    Article  MathSciNet  Google Scholar 

  14. Xu, S.S.-D., Liu, Y.-K.: Study of Takagi-Sugeno fuzzy-based terminal-sliding mode fault-tolerant control. IET Control Theory Appl. 8, 667–674 (2014)

    Article  MathSciNet  Google Scholar 

  15. Han, Z., Zhang, K., Yang, T., Zhang, M.: Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode. IET Control Theory Appl. 10, 1991–1999 (2016)

    Article  MathSciNet  Google Scholar 

  16. Emel’Yanov, S.V., Korovin, S.K., Levantovskii, L.V: Higher-order sliding modes in binary control systems. In: Soviet Physics Doklady, p. 291 (1986)

    Google Scholar 

  17. Martínez-Fuentes, C.A., Moreno, J.A., Fridman, L.: Anti-chattering strategy using twisting controller. IFAC-PapersOnLine 51, 384–389 (2018)

    Article  Google Scholar 

  18. Luo, D., Xiong, X., Jin, S., Kamal, S.: Adaptive gains of dual level to super-twisting algorithm for sliding mode design. IET Control Theory Appl. 12, 2347–2356 (2018)

    Article  MathSciNet  Google Scholar 

  19. Jiang, T., Khorasani, K., Tafazoli, S.: Parameter estimation-based fault detection, isolation and recovery for nonlinear satellite models. IEEE Trans. Control Syst. Technol. 16, 799–808 (2008)

    Article  Google Scholar 

  20. Chan, C.W., Hua, S., Hong-Yue, Z.: Application of fully decoupled parity equation in fault detection and identification of DC motors. IEEE Trans. Ind. Electron. 53, 1277–1284 (2006)

    Article  Google Scholar 

  21. Fridman, L., Shtessel, Y., Edwards, C., Yan, X.-G.: Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust Nonlinear Control IFAC-Affiliated J. 18, 399–412 (2008)

    Article  MathSciNet  Google Scholar 

  22. Dávila, J., Salazar, S.: Robust control of an uncertain UAV via high-order sliding mode compensation. IFAC-PapersOnLine 50, 11553–11558 (2017)

    Article  Google Scholar 

  23. Kommuri, S.K., Lee, S.B., Veluvolu, K.C.: Robust sensors-fault-tolerance with sliding mode estimation and control for PMSM drives. IEEE/ASME Trans. Mechatron. 23, 17–28 (2018)

    Article  Google Scholar 

  24. Cruz-Zavala, E., Moreno, J.A.: Homogeneous high order sliding mode design: a Lyapunov approach. Automatica 80, 232–238 (2017)

    Article  MathSciNet  Google Scholar 

  25. Cruz-Zavala, E., Moreno, J.A.: Levant’s arbitrary order exact differentiator: a Lyapunov approach. IEEE Trans. Autom. Control 64, 3034–3039 (2018)

    Article  Google Scholar 

  26. Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57, 1035–1040 (2012)

    Article  MathSciNet  Google Scholar 

  27. Kumari, K., Chalanga, A., Bandyopadhyay, B.: Implementation of super-twisting control on higher order perturbed integrator system using higher order sliding mode observer. IFAC-PapersOnLine 49, 873–878 (2016)

    Article  Google Scholar 

  28. Xiong, X., Kamal, S., Jin, S.: Adaptive gains to super-twisting technique for sliding mode design. arXiv preprint arXiv:1805.07761 (2018)

  29. Khalil, H.K.: High-gain observers in nonlinear feedback control. In: 2008 International Conference on Control, Automation and Systems, pp. xlvii–lvii (2008)

    Google Scholar 

  30. Khalil, H.K.: Cascade high-gain observers in output feedback control. Automatica 80, 110–118 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B03930496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, Q.D., Kang, HJ. (2019). Real Implementation of an Active Fault Tolerant Control Based on Super Twisting Technique for a Robot Manipulator. In: Huang, DS., Huang, ZK., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science(), vol 11645. Springer, Cham. https://doi.org/10.1007/978-3-030-26766-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26766-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26765-0

  • Online ISBN: 978-3-030-26766-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics