Skip to main content

Continuous PID Sliding Mode Control Based on Neural Third Order Sliding Mode Observer for Robotic Manipulators

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11645))

Abstract

This paper proposes a continuous PID sliding mode control strategy based on a neural third-order sliding mode observer for robotic manipulators by using only position measurement. A neural third-order sliding mode observer based on radial basis function neural network is first proposed to estimate both the velocities and the dynamic uncertainties and faults. In this observer, the radial basis function neural networks are used to estimate the parameters of the observer, therefore, the requirement of prior knowledge of the dynamic uncertainties and faults is eliminated. The obtained velocities and lumped uncertainties and fault information are then employed to design the continuous PID sliding mode controller based on the super-twisting algorithm. Consequently, this controller provides finite-time convergence, high accuracy, chattering reduction, and robustness against the dynamic uncertainties and faults without the need of velocity measurement and the prior knowledge of the lumped dynamic uncertainties and faults. The global stability and finite-time convergence of the controller are guaranteed in theory by using Lyapunov function. The effectiveness of the proposed method is verified by computer simulation for a PUMA560 robot.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Song, Y., Huang, X., Wen, C.: Robust adaptive fault-tolerant PID control of MIMO nonlinear systems with unknown control direction. IEEE Trans. Ind. Electron. 64(6), 4876–4884 (2017)

    Article  Google Scholar 

  2. Alibeji, N., Sharma, N.: A PID-type robust input delay compensation method for uncertain Euler-Lagrange systems. IEEE Trans. Control Syst. Technol. 25(6), 2235–2242 (2017)

    Article  Google Scholar 

  3. Slotine, J.-J.E., Li, W.: On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  4. Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)

    Article  Google Scholar 

  5. Tong, S., Wang, T., Li, Y.: Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 22(3), 563–574 (2014)

    Article  Google Scholar 

  6. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  7. Song, Y., Guo, J.: Neuro-adaptive fault-tolerant tracking control of Lagrange systems pursuing targets with unknown trajectory. IEEE Trans. Ind. Electron. 64(5), 3913–3920 (2017)

    Article  Google Scholar 

  8. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Heidelberg (2013)

    Google Scholar 

  9. Islam, S., Liu, X.P.: Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 58(6), 2444–2453 (2011)

    Article  Google Scholar 

  10. Guo, Y., Woo, P.-Y.: An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 33(2), 149–159 (2003)

    Article  Google Scholar 

  11. Eker, I.: Sliding mode control with PID sliding surface and experimental application to an electromechanical plant. ISA Trans. 45(1), 109–118 (2006)

    Article  Google Scholar 

  12. Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57(4), 1035–1040 (2012)

    Article  MathSciNet  Google Scholar 

  13. Elmali, H., Olgac, N.: Implementation of sliding mode control with perturbation estimation (SMCPE). IEEE Trans. Control Syst. Technol. 4(1), 79–85 (1996)

    Article  Google Scholar 

  14. Van, M., Ge, S.S., Ren, H.: Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Trans. Cybern. 47(7), 1681–1693 (2017)

    Article  Google Scholar 

  15. Van, M., Kang, H.-J.: Robust fault-tolerant control for uncertain robot manipulators based on adaptive quasi-continuous high-order sliding mode and neural network. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 229(8), 1425–1446 (2015)

    Article  Google Scholar 

  16. Van, M., Kang, H.-J., Suh, Y.-S., Shin, K.-S.: Output feedback tracking control of uncertain robot manipulators via higher-order sliding-mode observer and fuzzy compensator. J. Mech. Sci. Technol. 27(8), 2487–2496 (2013)

    Article  Google Scholar 

  17. Chalanga, A., Kamal, S., Fridman, L.M., Bandyopadhyay, B., Moreno, J.A.: Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches. IEEE Trans. Ind. Electron. 63(6), 3677–3685 (2016)

    Article  Google Scholar 

  18. Bahrami, M., Naraghi, M., Zareinejad, M.: Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems. ISA Trans. 76, 235–245 (2018)

    Article  Google Scholar 

  19. Le, T.D., Kang, H.-J.: A fuzzy adaptive sliding mode controller for tracking control of robotic manipulators. J. Inst. Control Robot. Syst. 18(6), 555–561 (2012)

    Article  Google Scholar 

  20. Hoang, D.-T., Kang, H.-J.: Fuzzy neural sliding mode control for robot manipulator. In: Huang, D.-S., Han, Kyungsook, Hussain, Abir (eds.) ICIC 2016. LNCS (LNAI), vol. 9773, pp. 541–550. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42297-8_50

    Chapter  Google Scholar 

  21. Ortiz-Ricardez, F.A., Sánchez, T., Moreno, J.A.: Smooth Lyapunov function and gain design for a second order differentiator. In: 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pp. 5402–5407 (2015)

    Google Scholar 

  22. Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 2008 47th IEEE Conference on Decision and Control, pp. 2856–2861 (2008)

    Google Scholar 

  23. Armstrong, B., Khatib, O., Burdick, J.: The explicit dynamic model and inertial parameters of the PUMA 560 arm. In: Proceedings of 1986 IEEE International Conference on Robotics and Automation, vol. 3, pp. 510–518 (1986)

    Google Scholar 

  24. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2016R1D1A3B03930496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, VC., Vo, AT., Kang, HJ. (2019). Continuous PID Sliding Mode Control Based on Neural Third Order Sliding Mode Observer for Robotic Manipulators. In: Huang, DS., Huang, ZK., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science(), vol 11645. Springer, Cham. https://doi.org/10.1007/978-3-030-26766-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26766-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26765-0

  • Online ISBN: 978-3-030-26766-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics