Skip to main content

Environmentally Friendly Concept of Phosphogypsum Recycling on the Basis of the Biotechnological Approach

  • Chapter
  • First Online:
International Business, Trade and Institutional Sustainability

Part of the book series: World Sustainability Series ((WSUSE))

Abstract

From the viewpoint of environmental security it is important to review the life cycle of phosphorite raw material transformation, from extraction to its use in the chemical industry with the forming of both useful products and secondary raw materials/waste, primarily upon the production of phosphate fertilizers with the forming of large-tonnage waste—phosphogypsum. The annually worldwide production of phosphogypsum is possibly up to 100 million tons. This paper focuses on the environmental analysis of chemical wastes as resource of technogenic genesis. To achieve the aim, the following tasks are set: the environmental impact analysis of the extraction and treatment process of phosphorous raw materials; alternatives in the field of phosphogypsum recycling within the framework of the concept of environmentally safe waste treatment development; the expediency of phosphogypsum use in environmental protection technologies. Thereupon, analytical study considers not only the accumulation of production waste in the environment, but also the products derived from this production waste when using it as a secondary raw material. Also the study includes analyses of features factors and practical recommendations for the implementation of a business strategy for different products from phosphogypsum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablieieva I, Plyatsuk L (2016) The immobilization of heavy metals during drilling sludge utilization. Environ Technol Innov 6:123–131

    Article  Google Scholar 

  • Aliedeh MA, Jarrah NA (2012) Application of full factorial design to optimize phosphogypsum beneficiation process (P2O5 Reduction) by using sulfuric and nitric acid solutions. In: Sixth Jordanian International Chemical Engineering Conference, Amman, Jordan, Mar 2012. Available at: http://www.jeaconf.org/UploadedFiles/Document/31365fa2-c30a-442c-ae60-bea341617140.pdf

  • Application of GFRG Panel (2018) Homepage, http://www.frbl.co.in/RAPIDWALL_FOR_HOUSING.pdf

  • Barakhnina VB, Hafizova AA, Kireev IR (2011) Иccлeдoвaниe вoзмoжнocти иcпoльзoвaния фocфoгипca пpи биooчиcткe бypoвыx cтoчныx вoд [Investigation of the possibility of using phosphogypsum in the biological purification of drilling wastewater]. Bashkir Chem J 18(2):90–92

    Google Scholar 

  • Belyuchenko IS (2015) Bлияниe дoзы фocфoгипca нa cocтaв и aгpoнoмичecкиe cвoйcтвa cлoжнoгo кoмпocтa [The effect of phosphogypsum dose on the composition and agronomic properties of complex compost]. North Cauc Ecol Her 11(1):84–92

    Google Scholar 

  • Brentrup F, Lammel J (2011) LCA to assess the environmental impact of different fertilisers and agricultural systems. In: Proceedings of International Fertiliser Society, York, UK. http://fertiliser-society.org/proceedings/uk/Prc687.HTM

  • Brentrup F, Palliere C (2008) GHG emissions and energy efficiency in European nitrogen fertiliser production and use. In: Proceedings of international fertiliser society, York, UK, 24 p

    Google Scholar 

  • Building with Rapidwall in India (2018) Homepage, https://www.rapidwall.com.au/

  • Chernish Y, Plyatsuk L (2016) Opportunity of biochemical process for phosphogypsum utilization. J Solid Waste Technol Manag 42(2):108–111

    Article  Google Scholar 

  • Chernysh YY, Plyatsuk LD, Dorda VA (2014) Ecotechnology for hydrogen sulfide removal and production of elemental sulfur. Int J Energy Clean Environ 15(2–4):189–202

    Article  Google Scholar 

  • Degirmenci N, Okucu A, Turabi A (2007) Application of phosphogypsum in soil stabilization. Build Environ 42(9):3393–3398

    Article  Google Scholar 

  • Energy and Environmental Profile of the U.S. Mining Industry (2002) https://energy.gov/eere/amo/downloads/itp-mining-energy-and-environmental-profile-us-mining-industry-december-2002

  • Gelbmann U, Klampfl-Pernold H (2010) Applying life cycle-oriented tools for analysing the sustainability of a regional waste management system. Reg Dev Dialogue 31(2)

    Google Scholar 

  • Golova TA, Davtyan AR (2017) Иccлeдoвaниe фocфoгипca кaк эффeктивнoгo вяжyщeгo для cтpoитeльныx кoмпoзитoв [The study of phosphogypsum as an effective binder for building composites]. In: Collection of articles of the winners of the VIII international scientific and practical conference: world science: problems and innovations, Penza, 30 Mar 2017, pp 63–65

    Google Scholar 

  • Guidelines for Environmental, Health and Labour Protection (2007) General guidelines: environmental protection. Phosphate fertilizer production, 28 p. http://www.ifc.org/ifcext/sustainability.nsf/Content/EnvironmentalGuidelines

  • Guinee JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45(1)

    Google Scholar 

  • Gukalov VV, Slavgorodskaya DA (2011) Bлияниe фocфoгипca нa вoднo-физичecкиe cвoйcтвa чepнoзeмa [The effect of phosphogypsum on the water-physical properties of chernozem]. North Cauc Ecol Her 7(1):83–85

    Google Scholar 

  • Hsien H Khoo, Reginald B, Tan H (2006) Life cycle evaluation of CO2 recovery and mineral sequestration alternatives. Environ Prog 25(3):208–217

    Article  Google Scholar 

  • Hussien S, Patra P, Somasundaran P et al (2018) Assessment of ‘bacterial (acidic)-leaching’ of rare earth elements from a phosphate ore. Adv Environ Stud 2(2):91–97

    Google Scholar 

  • Kalinina OV (2011) Иcпoльзoвaниe фocфoгипca для peкyльтивaции зaгpязнeнныx мaзyтoм пoчв [The use of phosphogypsum for the remediation of soils contaminated with fuel oil]. North Cauc Ecol Her 7(1):86–88

    Google Scholar 

  • Kneifel J (2010) Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings. Energy Build 42(3):333–340

    Article  Google Scholar 

  • Korre A, Nie Z, Durucan S (2010) Life cycle modelling of fossil fuel power generation with post-combustion CO2 capture. Int J Greenh Gas Control 4(2):289–300

    Article  Google Scholar 

  • Lin C-F (2010) Method for the sequestration of carbon dioxide. From German Offen, DE 102008054395 A1 20100617

    Google Scholar 

  • Lutskiy DS, Litvinova TE, Ignatovich AS, Fialkovskiy I (2018) Complex processing of phosphogypsum—a way of recycling dumps with reception of commodity production of wide application. J Ecol Eng 19(2):221–225. https://doi.org/10.12911/22998993/83562

    Article  Google Scholar 

  • Moreno MA, Ortega JF, Córcoles JI, Martínez A, Tarjuelo JM (2010) Energy analysis of irrigation delivery systems: monitoring and evaluation of proposed measures for improving energy efficiency. Irrig Sci 28(5):445–460

    Article  Google Scholar 

  • Muravyov YI (2010) Пepcпeктивы иcпoльзoвaния фocфoгипca в ceльcкoм xoзяйcтвe [Prospects for the use of phosphogypsum in agriculture]. North Cauc Ecol Her 6(4):85–89

    Google Scholar 

  • Muravyov YI, Belyuchenko IS (2007) Bлияниe oтxoдoв xимичecкoгo пpoизвoдcтвa нa зaгpязнeниe oкpyжaющиx лaндшaфтoв [Impact of chemical production wastes on pollution of surrounding landscapes]. North Cauc Ecol Her 3(4):77–86

    Google Scholar 

  • Nemecek T, Elie OH, Dubois D et al (2011) Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agric Syst 104:233–245

    Article  Google Scholar 

  • Papastefanou C, Stoulos S, Ioannidou A, Manolopoulou M (2006) The application of phosphogypsum in agriculture and the radiological impact. J Environ Radioact 89(2):188–198

    Article  Google Scholar 

  • Plyatsuk L, Chernish Y (2014) Intensification of the anaerobic microbiological degradation of sewage sludge and gypsum waste under bio-sulfidogenic conditions. J Solid Waste Technol Manag 40(1):10–23

    Article  Google Scholar 

  • Plyatsuk LD, Chernysh YY, Yakhnenko OM (2018) 4343 Methodical instructions for conducting practical classes, recommendations for performing calculations of cleaning installations in technological systems of environmental protection for the discipline “Technoecology”, SSU, Sumy, 15 p

    Google Scholar 

  • Production of Phosphoric Acid (2000) Booklet 4 of 8. General Product Information on Phosphoric Acid. European Fertilized Manufacturers Association. Fisherprint Ltd., Peterborough, 44 p

    Google Scholar 

  • Recovery of Rare Earth Elements from Phosphogypsum (REE–PG) (2018) Homepage, https://www.aka.fi/globalassets/32akatemiaohjelmat/misu/hankekuvaukset/misu_sainio_ree-pg.pdf. Last accessed 2018/11/12

  • Report “Reduction of Pollution from Discharges into Water, Emissions into the Atmosphere and Phosphogypsum out of the Production of Fertilizers” (2013) HELCOM HOD 41/2013, Document 3/17, 10.6.2013. 41st Meeting. Helsinki, Finland, 17–18 June 2013, 40 p

    Google Scholar 

  • Savoyskaya EV (2017) Prospect for the development and economic efficiency of raw material resources. Bull Russ Acad Sci 2:122–127

    Google Scholar 

  • Shalashova OYu, Ivanova NA (2016) Измeнeниe физикo-xимичecкиx cвoйcтв чepнoзeмa oбыкнoвeннoгo cpeднecoлoнцeвaтoгo пoд влияниeм yдoбpитeльнo-мeлиopиpyющиx cмeceй [Changes in the physicochemical properties of the chernozem of the ordinary medium-colic under the influence of fertilizer-meliorating mixtures]. Bull Omsk State Agrar Univ 2(22):72–80

    Google Scholar 

  • Shaydullina IA, Yapparov AH, Degtyareva IA, Latypova VZ, Gadieva SH (2015) Peкyльтивaция нeфтeзaгpязнeнныx пoчв нa пpимepe выщeлoчeнныx чepнoзeмoв Taтapcтaнa [Reclamation of oil-contaminated soils on the example of leached chernozem of Tatarstan]. Oil Ind 3:102–105

    Google Scholar 

  • Shuisky AI, Novozhilov AA, Torlina EA (2016) Meтoды и cпocoбы пepepaбoтки фocфoгипca в кoндициoннoe cыpьe c yчeтoм экoлoгичecкиx фaктopoв [Methods and methods of processing phosphogypsum into conditioned raw materials, taking into account environmental factors]. Econ Ecol Territ Form 1:82–84

    Google Scholar 

  • Tayibi H, Choura M, López FA, Alguacil FJ, López-Delgado A (2009) Environmental impact and management of phosphogypsum (review). Available at: http://digital.csic.es/bitstream/10261/45241/3/Environmental%20impact%20and%20management%20of%20phosphogypsum.pdf

  • Thoms GE, Green K (2008) Improved method of capturing carbon dioxide and converting to carbonate anions and then combining with calcium cations to form calcium carbonate. From Granted Innovation Pat. (Australia), AU 2007101174 A4 20080131

    Google Scholar 

  • Tovazhnyanskij LL, Kapustenko PA, Buhkalo SI, Perevertajlenko AYu, Havin GL, Arsen’eva OP (2009) К вoпpocy пoвышeния энepгoэффeктивнocти кoмплeкcныx тexнoлoгий кoнвepcии фocфoгипca [On the issue of improving the energy efficiency of complex phosphogypsum conversion technologies]. Integr Technol Energy Conserv 1:3–8

    Google Scholar 

  • Villa M, Mosqueda F, Hurtado S, Mantero J, Manjón G, Periañez R, Vaca F, García-Tenorio R (2009) Contamination and restoration of an estuary affected by phosphogypsum releases. Sci Total Environ 408(1):69–77

    Article  Google Scholar 

  • Wolicka D (2008) Biotransformation of phosphogypsum in wastewaters from the dairy industry. Bioresour Technol 99(13):5666–5672

    Article  Google Scholar 

  • Wolicka D, Kowalski W (2006) Biotransformation of phosphogypsum on distillery decoctions (Preliminary results). Pol J Microbiol 55(2):147–151

    Google Scholar 

  • Yakovlev AS, Kaniskin MA, Terekhova VA (2013) Ecological evaluation of artificial soils treated with phosphogypsum. Eurasian Soil Sci 46(6):697–703

    Article  Google Scholar 

  • Yurkova R Ye, Dokuchaeva LM (2016) Bлияниe cпocoбoв и дoз внeceния фocфoгипca нa физичecкиe cвoйcтвa пoчв кoмплeкcнoгo пoкpoвa [The influence of the methods and doses of phosphogypsum making on the physical properties of the soils of the complex cover]. Sci J Russ Sci Res Inst Land Improv Probl 3(23):102–115

    Google Scholar 

  • Zhuang WQ, Fitts JP, Ajo-Franklin CM, Maes S, Alvarez-Cohen L, Hennebel T (2015) Recovery of critical metals using biometallurgy. Curr Opin Biotechnol 33:327–335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yelizaveta Chernysh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chernysh, Y., Plyatsuk, L. (2020). Environmentally Friendly Concept of Phosphogypsum Recycling on the Basis of the Biotechnological Approach. In: Leal Filho, W., Borges de Brito, P., Frankenberger, F. (eds) International Business, Trade and Institutional Sustainability. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-030-26759-9_10

Download citation

Publish with us

Policies and ethics