Skip to main content

Flash, Storm, and Mistral: Hardware-Friendly and High Quality Tone Mapping

  • Conference paper
  • First Online:
Book cover Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 997))

Abstract

While high dynamic range (HDR) images are being used ever more widely, the majority of display devices are able to properly handle only low dynamic range (LDR) images. Tone mapping operators (TMOs) solve this problem by compressing the dynamic range of HDR images so that they can be displayed as LDR images. The problem with many state-of-the-art TMOs is that despite giving high quality results they are often too complex to be used for simple hardware implementations. In this paper several new TMOs formed around the perceptually based Naka-Rushton equation are proposed with the main goal being hardware-friendliness. The proposed TMOs are of gradually increasing complexity, which allows choosing the most appropriate trade-off between quality and complexity, and all of them are designed to have O(1) per-pixel complexity. The results are presented and discussed and it is shown that the proposed TMOs outperform most well-known publicly available TMOs in terms of quality and speed. The source codes of the proposed TMOs written in C++, Matlab, Python, Java, and HTML+JavaScript are available at http://www.fer.unizg.hr/ipg/resources/color_constancy/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High Dynamic Range Imaging: Acquisition, Display, and Image-Basedlighting. Morgan Kaufmann, Burlington (2010)

    Google Scholar 

  2. Koschan, A., Abidi, M.: Digital Color Image Processing. Wiley, Hoboken (2008)

    Book  Google Scholar 

  3. Banić, N., Lončarić, S.: Improving the Tone Mapping Operators by Using a Redefined Version of the Luminance Channel. In: Image and Signal Processing. Springer (2014) 392–399

    Google Scholar 

  4. Nguyen, R.M., Brown, M.S.: Why you should forget luminance conversion and do something better. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6750–6758 (2017)

    Google Scholar 

  5. Tumblin, J., Rushmeier, H.: Tone reproduction for realistic images. IEEE Comput. Graph. Appl. 13, 42–48 (1993)

    Article  Google Scholar 

  6. Chiu, K., et al.: Spatially nonuniform scaling functions for high contrast images. In: Graphics Interface, Canadian Information Processing Society, p. 245 (1993)

    Google Scholar 

  7. Ward, G.: A contrast-based scalefactor for luminance display. In: Graphics gems IV, pp. 415–421 (1994)

    Google Scholar 

  8. Schlick, C.: Quantization techniques for visualization of high dynamic range pictures. In: Sakas, G., Müller, S., Shirley, P. (eds.) Photorealistic Rendering Techniques, pp. 7–20. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-87825-1_2

    Chapter  Google Scholar 

  9. Pattanaik, S.N., Tumblin, J., Yee, H., Greenberg, D.P.: Time-dependent visual adaptation for fast realistic image display. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 47–54. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  10. Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. In: Computer Graphics Forum, vol. 22, pp. 419–426. Wiley Online Library (2003)

    Google Scholar 

  11. Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans. Visual Comput. Graphics 11, 13–24 (2005)

    Article  Google Scholar 

  12. Larson, G.W., Rushmeier, H., Piatko, C.: A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. Visual Comput. Graphics 3, 291–306 (1997)

    Article  Google Scholar 

  13. Braun, G.J., Fairchild, M.D.: Image lightness rescaling using sigmoidal contrast enhancement functions. J. Electron. Imaging 8, 380–393 (1999)

    Article  Google Scholar 

  14. Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 83–90. ACM Press/Addison-Wesley Publishing Co. (1999)

    Google Scholar 

  15. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. In: ACM Transactions on Graphics (TOG), vol. 21, pp. 257–266 (2002)

    Google Scholar 

  16. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. In: ACM Transactions on Graphics (TOG), vol. 21, pp. 267–276. ACM (2002)

    Google Scholar 

  17. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: ACM Transactions on Graphics (TOG), vol. 21, pp. 249–256. ACM (2002)

    Google Scholar 

  18. Mantiuk, R., Myszkowski, K., Seidel, H.P.: A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Appl. Percept. (TAP) 3, 286–308 (2006)

    Article  Google Scholar 

  19. Meylan, L., Susstrunk, S.: High dynamic range image rendering with a retinex-based adaptive filter. IEEE Trans. Image Process. 15, 2820–2830 (2006)

    Article  Google Scholar 

  20. Banić, N., Lončarić, S.: Color badger: a novel retinex-based local tone mapping operator. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 400–408. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07998-1_46

    Chapter  Google Scholar 

  21. Banić, N., Lončarić, S.: Puma: a high-quality retinex-based tone mapping operator. In: Signal Processing Conference (EUSIPCO), 2016 24rd European, pp. 943–947. IEEE (2016)

    Google Scholar 

  22. Kuang, J., Yamaguchi, H., Johnson, G.M., Fairchild, M.D.: Testing HDR image rendering algorithms. In: Color and Imaging Conference, vol. 2004, pp. 315–320. Society for Imaging Science and Technology (2004)

    Google Scholar 

  23. Kuang, J., Yamaguchi, H., Liu, C., Johnson, G.M., Fairchild, M.D.: Evaluating HDR rendering algorithms. ACM Trans. Appl. Percept. (TAP) 4, 9 (2007)

    Article  Google Scholar 

  24. Urbano, C., Magalhães, L., Moura, J., Bessa, M., Marcos, A., Chalmers, A.: Tone mapping operators on small screen devices: an evaluation study. In: Computer Graphics Forum, vol. 29, pp. 2469–2478. Wiley Online Library (2010)

    Google Scholar 

  25. Banić, N., Lončarić, S.: Flash and storm: fast and highly practical tone mapping based on Naka-Rushton equation. In: International Conference on Computer Vision Theory and Applications (VISAPP), pp. 47–53 (2018)

    Google Scholar 

  26. Banić, N., Lončarić, S.: Smart light random memory sprays retinex: a fast retinex implementation for high-quality brightness adjustment and color correction. JOSA A 32, 2136–2147 (2015)

    Article  Google Scholar 

  27. Banić, N., Lončarić, S.: Towards hardware-friendly Retinex algorithms. In: 2017 10th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 104–108. IEEE (2017)

    Google Scholar 

  28. Shapley, R., Enroth-Cugell, C.: Visual adaptation and retinal gain controls. Prog. Retinal Res. 3, 263–346 (1984)

    Article  Google Scholar 

  29. Dowling, J.E.: The Retina: An Approachable Part of the Brain. Harvard University Press, Cambridge (1987)

    Google Scholar 

  30. Joze, H.R.V., Drew, M.S., Finlayson, G.D., Rey, P.A.T.: The role of bright pixels in illumination estimation. In: Color and Imaging Conference, vol. 2012, pp. 41–46. Society for Imaging Science and Technology (2012)

    Google Scholar 

  31. Huang, J., Mumford, D.: Statistics of natural images and models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, vol. 1. IEEE (1999)

    Google Scholar 

  32. NTUST, C.G.G.: http://graphics.csie.ntust.edu.tw/pub/hdr/ (2015)

  33. Fairchild, M.D.: http://rit-mcsl.org/fairchild/hdrps/hdrthumbs.html (2015)

  34. Ma, K., Yeganeh, H., Zeng, K., Wang, Z.: High dynamic range image compression by optimizing tone mapped image quality index. IEEE Trans. Image Process. 24, 3086–3097 (2015)

    Article  MathSciNet  Google Scholar 

  35. Yeganeh, H., Zhou, W.: Objective quality assessment of tone mapped images. IEEE Trans. Image Process. 22, 657–667 (2013)

    Article  MathSciNet  Google Scholar 

  36. Wilson, H.R.: Psychophysical models of spatial vision and hyperacuity. Spat. Vis. 10, 64–81 (1991)

    Google Scholar 

  37. Peli, E.: Contrast in complex images. JOSA A 7, 2032–2040 (1990)

    Article  Google Scholar 

  38. Jobson, D.J., Rahman, Z.U., Woodell, G., et al.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6, 965–976 (1997)

    Article  Google Scholar 

  39. Pattanaik, S.N., Ferwerda, J.A., Fairchild, M.D., Greenberg, D.P.: A multiscale model of adaptation and spatial vision for realistic image display. In: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 287–298. ACM (1998)

    Google Scholar 

  40. Crow, F.C.: Summed-area tables for texture mapping. ACM SIGGRAPH Comput. Graph. 18, 207–212 (1984)

    Article  Google Scholar 

  41. Banić, N., Lončarić, S.: Firefly: a hardware-friendly real-time local brightness adjustment method. In: 2015 22nd IEEE International Conference on Image Processing (ICIP), pp. 3951–3955. IEEE (2015)

    Google Scholar 

  42. Ward, G.: http://www.anyhere.com/gward/hdrenc/pages/originals.html (2015)

  43. Ashikhmin, M.: A tone mapping algorithm for high contrast images. In: Proceedings of the 13th Eurographics Workshop on Rendering, pp. 145–156. Eurographics Association (2002)

    Google Scholar 

  44. Mantiuk, R., Daly, S., Kerofsky, L.: Display adaptive tone mapping. In: ACM Transactions on Graphics (TOG), vol. 27, p. 68. ACM (2008)

    Google Scholar 

  45. Ziaei Nafchi, H., Shahkolaei, A., Farrahi Moghaddam, R., Cheriet, M.: FSITM: a feature similarity index for tone-mapped images. IEEE Signal Process. Lett. 22, 1026–1029 (2015)

    Article  Google Scholar 

  46. Banić, N., Lončarić, S.: Sensitivity of tone mapped image quality metrics to perceptually hardly noticeable differences. In: Proceedings of The Fifth Croatian Computer Vision Workshop (CCVW 2013), no. 1, pp. 15–18. University of Zagreb Faculty of Electrical Engineering and Computing (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Banić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banić, N., Lončarić, S. (2019). Flash, Storm, and Mistral: Hardware-Friendly and High Quality Tone Mapping. In: Bechmann, D., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2018. Communications in Computer and Information Science, vol 997. Springer, Cham. https://doi.org/10.1007/978-3-030-26756-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26756-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26755-1

  • Online ISBN: 978-3-030-26756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics