Skip to main content

Management of Sympathomimetic Overdose Including Designer Drugs

  • Chapter
  • First Online:
Evidence-Based Critical Care

Abstract

Sympathomimetic drugs include a vast array of medicinal compounds and drugs of abuse that act to either mimic or modify the actions of catecholamines (epinephrine, norepinephrine, dopamine) within the sympathetic nervous system. (Table 8.1) Some act as direct agonists at peripheral alpha- and/or beta-adrenergic receptors (e.g. phenylephrine, dobutamine). Others activate the sympathetic nervous system indirectly by either enhancing the release of neurotransmitters (e.g. ephedrine, methamphetamine), or inhibiting neurotransmitter reuptake (e.g. cocaine). Depending on the drug, these effects may predominate in either the central nervous system or at peripheral nerve synapses. Furthermore, many of these drugs modulate activity at serotonin receptors in the central nervous system (e.g. MDMA).

In clinically toxic exposures, hypertensive crisis and profound vasoconstriction can occur that may lead to ischemic injury of critical organs including the heart and brain. Additional cardiovascular effects include tachycardia and cardiac arrhythmias, and vascular injury including aortic dissection and cerebral hemorrhage. Many of these drugs can cause profound hyperpyrexia. Neuropsychiatric effects can include agitation, psychosis and seizures. In severe cases, rhabdomyolysis and disseminated intravascular coagulation may occur. Metabolic derangements may include hyperglycemia, acidosis, and electrolyte imbalance.

Management of these patients may be quite challenging. Treatment strategies should be uniquely tailored to the clinical effects of the drug. GI contamination should be considered early when a toxic oral ingestion is suspected. Attention should be focused on ensuring adequate hydration and correction of metabolic abnormalities. Seizures, agitation and psychosis are generally treated with liberal use of intravenous benzodiazepines. Non-selective alpha/beta-adrenergic blockers should be used aggressively when hypertensive crisis or end organ ischemia is of concern. The use of external cooling techniques is paramount when hyperpyrexia occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Havakuk O, Rezkalla SH, Kloner RA. The cardiovascular effects of cocaine. J Am Coll Cardiol. 2017;70(1):101–13.

    Article  CAS  Google Scholar 

  2. Juurlink D. Activated charcoal for acute overdose: a reappraisal. Br J Clin Pharmacol. 2016;81(3):482–7.

    Article  Google Scholar 

  3. Traub SJ, Hoffman RS, Nelson LS. Body packing—the internal concealment of illicit drugs. N Engl J Med. 2003;349(26):2519–26.

    Article  CAS  Google Scholar 

  4. Lee K, Koehn M, Rastegar RF, van Hoorn F, Roy E, Berger FH, Nicolaou S. Body packers: the ins and outs of imaging. Can Assoc Radiol J. 2012;63:318–22.

    Article  Google Scholar 

  5. Olmedo R, Nelson L, Chu J, Hoffman RS. Is surgical decontamination definitive treatment of “Body Packers”? Am J Emerg Med. 2001;19:593–6.

    Article  CAS  Google Scholar 

  6. Spiller HA, et al. Overdose of drugs for attention-deficit hyperactivity disorder: clinical presentation, mechanisms of toxicity, and management. CNS Drugs. 2013;27(7):531–43. https://doi.org/10.1007/s40263-013-0084-8.

    Article  CAS  PubMed  Google Scholar 

  7. Mas-Morey P, et al. Clinical toxicology and management of intoxications with synthetic cathinones (Bath Salts). J Pharm Pract. 2012;26(4):353–7. https://doi.org/10.1177/0897190012465949.

    Article  PubMed  Google Scholar 

  8. Richards JR, et al. Treatment of toxicity from amphetamines, related derivatives, and analogues: a systematic clinical review. Drug Alcohol Depend. 2015;150:1–13. https://doi.org/10.1016/j.drugalcdep.2015.01.040.

    Article  CAS  PubMed  Google Scholar 

  9. Mokhlesi B, et al. Street drug abuse leading to critical illness. Intensive Care Med. 2004;30(8):1526–36. https://doi.org/10.1007/s00134-004-2229-1.

    Article  PubMed  Google Scholar 

  10. Connors NJ, et al. Antipsychotics for the treatment of sympathomimetic toxicity: a systematic review. Am J Emerg Med. 2019; https://doi.org/10.1016/j.ajem.2019.01.001.

  11. Yildiz A. Pharmacological management of agitation in emergency settings. Emerg Med J. 2003;20(4):339–46. https://doi.org/10.1136/emj.20.4.339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tobias J. Dexmedetomidine to control agitation and delirium from toxic ingestions in adolescents. J Pediatr Pharmacol Ther. 2010;15:43–8.

    PubMed  PubMed Central  Google Scholar 

  13. Lam RPK, et al. Dexmedetomidine use in the ED for control of methamphetamine-induced agitation. Am J Emerg Med. 2017;35(4):665. https://doi.org/10.1016/j.ajem.2016.11.004.

    Article  PubMed  Google Scholar 

  14. Shah ASV, Eddleston M. Should phenytoin or barbiturates be used as second-line anticonvulsant therapy for toxicological seizures? Clin Toxicol. 2010;48(8):800–5. https://doi.org/10.3109/15563650.2010.521506.

    Article  CAS  Google Scholar 

  15. Lason W. Neurochemical and pharmacological aspects of cocaine-induced seizures. Pol J Pharmacol. 2001;53:57–60.

    CAS  PubMed  Google Scholar 

  16. Derlet RW, Albertson TE. Anticonvulsant modification of cocaine-induced toxicity in the rat. Neuropharmacology. 1990;29(3):255–9. https://doi.org/10.1016/0028-3908(90)90010-o.

    Article  CAS  PubMed  Google Scholar 

  17. Lee T, et al. Levetiracetam in toxic seizures. Clin Toxicol. 2017;56(3):175–81. https://doi.org/10.1080/15563650.2017.1355056.

    Article  CAS  Google Scholar 

  18. Anderson JL, et al. 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction. Circulation. 2013;127(23):179–347. https://doi.org/10.1161/cir.0b013e31828478ac.

    Article  Google Scholar 

  19. Richards JR, et al. Treatment of cocaine cardiovascular toxicity: a systematic review. Clin Toxicol. 2016;54(5):345–64. https://doi.org/10.3109/15563650.2016.1142090.

    Article  CAS  Google Scholar 

  20. Paratz ED, Cunningham NJ, MacIsaac AI. The cardiac complications of methamphetamines. Heart Lung Circ. 2016;25:325–32.

    Article  Google Scholar 

  21. Pham D, et al. Outcomes of beta blocker use in cocaine-associated chest pain: a meta-analysis. Emerg Med J. 2018;35(9):559–63. https://doi.org/10.1136/emermed-2017-207065.

    Article  PubMed  Google Scholar 

  22. Lange RA, Hillis LD. Cardiovascular complications of cocaine use. N Engl J Med. 2001;345(5):351–8.

    Article  CAS  Google Scholar 

  23. Mirrakhimov AE, Ayach T, Barbaryan A, Talari G, Chadha R, Gray A. The role of sodium bicarbonate in the management of some toxic ingestions. Int J Nephrol. 2017;2017:7831358. https://doi.org/10.1155/2017/7831358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalimullah EA, Bryant SM. Case files of the medical toxicology fellowship at the toxikon consortium in Chicago: cocaine-associated wide-complex dysrhythmias and cardiac arrest—treatment nuances and controversies. J Med Toxicol. 2008;4(4):277–83.

    Article  Google Scholar 

  25. DeWitt CR, Cleveland N, Dart RC, Heard K. The effect of amiodarone pretreatment on survival of mice with cocaine toxicity. J Med Toxicol. 2003;1(1):11–8.

    Article  Google Scholar 

  26. Winecoff AP, Hariman RJ, Grawe JJ, Wang W, Bauman JL. Reversal of the electrocardiographic effects of cocaine by lidocaine. Part 1. Comparison with sodium bicarbonate and quinidine. Pharmacotherapy. 1994;14(6):698–703.

    CAS  PubMed  Google Scholar 

  27. Laskowski LK, Landry A, Vasselo SU, Hoffman RS. Ice water submersion for rapid cooling in severe drug-induced hyperthermia. Clin Toxicol (Phila). 2015;53(3):181–4.

    Article  CAS  Google Scholar 

  28. Kiyatkin EA, et al. Clinically relevant strategies that reverse MDMA-induced brain hyperthermia potentiated by social interaction. Neuropsychopharmacology. 2016;41(2):549–59.

    Article  CAS  Google Scholar 

  29. Blessing BB, Seaman B, Pedersen P, Ootsuka Y. Clozapine reverses hyperthermia and sympathetically mediated cutaneous vasoconstriction induced by 3,4-methylenedioxymethamphetamine (Ecstasy) in rabbits and rats. J Neurosci. 2003;23(15):6385–91.

    Article  CAS  Google Scholar 

  30. Megarbane B, Resiere D, Delahave A, Baud FJ. Endovascular hypothermia for heat stroke: a case report. Intensive Care Med. 2003;30(1):170.

    Article  Google Scholar 

  31. Grunau BE, Wiens MO, Brubacher JR. Dantrolene in the treatment of MDMA-related hyperpyrexia: a systematic review. CJEM. 2010;12(5):435–42.

    Article  Google Scholar 

  32. Hysek CM, Schmid Y, Rickli A, Simmler LD, Donzelli M, Grouzmann E, Liechti ME. Carvedilol inhibits the cardiostimulant and thermogenic effects of MDMA in humans. Br J Pharmacol. 2012;166(8):2277–88.

    Article  CAS  Google Scholar 

  33. Zona LC, Grecco GG, Sprague JE. Cooling down the bath salts: carvedilol attenuation of methylone and mephedrone mediated hyperthermia. Toxicol Lett. 2016;263:11–5.

    Article  CAS  Google Scholar 

  34. Jakkala-Saibaba R, et al. Treatment of cocaine overdose with lipid emulsion. Anaesthesia. 2011;66(12):1168–70. https://doi.org/10.1111/j.1365-2044.2011.06895.x.

    Article  CAS  PubMed  Google Scholar 

  35. Gosselin S, et al. Evidence-based recommendations on the use of intravenous lipid emulsion therapy in poisoning. Clin Toxicol. 2016;54(10):899–923. https://doi.org/10.1080/15563650.2016.1214275.

    Article  CAS  Google Scholar 

  36. Arora NP, et al. Usefulness of intravenous lipid emulsion for cardiac toxicity from cocaine overdose. Am J Cardiol. 2013;111(3):445–7. https://doi.org/10.1016/j.amjcard.2012.10.022.

    Article  CAS  PubMed  Google Scholar 

  37. Members of the Position Statement and Guidelines Committee, ACMT. ACMT position statement: guidance for the use of intravenous lipid emulsion. J Med Toxicol. 2016;13(1):124–5. https://doi.org/10.1007/s13181-016-0550-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Shaffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lam, V., Shaffer, R.W. (2020). Management of Sympathomimetic Overdose Including Designer Drugs. In: Hyzy, R.C., McSparron, J. (eds) Evidence-Based Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-030-26710-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26710-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26709-4

  • Online ISBN: 978-3-030-26710-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics