Skip to main content

Acute Respiratory Failure: Non-invasive Ventilation and High Flow Nasal Cannula

  • Chapter
  • First Online:
Evidence-Based Critical Care

Abstract

Non-invasive ventilation (NIV) is associated with improved outcomes among select patients with acute respiratory failure, primarily when due to acute exacerbations of chronic obstructive pulmonary disease and acute decompensated heart failure. This chapter presents an overview of NIV indications, risks, and benefits, as well as a limited practical overview of initial NIV settings and subsequent adjustments. NIV is relatively contraindicated in patients who cannot adequately protect their airway due to trauma, oral and respiratory secretions, or substantially altered mental status. However, patients who are altered due to hypercapnia may warrant a closely observed trial of NIV. Moderate evidence supports the use of NIV as a weaning strategy from invasive mechanical ventilation. While NIV has been studied in patients with acute respiratory failure due to pneumonia, these patients are at high risk for NIV failure with subsequent increased mortality, and invasive ventilation has traditionally been favored when these patients require mechanical respiratory support. High flow nasal cannula (HFNC) has emerged as an increasingly common support modality for acute hypoxic respiratory and may be used as a substitute or adjunct to NIV. The use of NIV and HFNC for patients with ARDS remains controversial, but may be feasible in a few select cases. Likewise, both NIV and HFNC can also be used for palliation of respiratory distress in certain patients with terminal disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nava S, Hill N. Non-invasive ventilation in acute respiratory failure. Lancet. 2009;374(9685):250–9. https://doi.org/10.1016/S0140-6736(09)60496-7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cabrini L, Landoni G, Oriani A, et al. Noninvasive ventilation and survival in acute care settings: A comprehensive systematic review and metaanalysis of randomized controlled trials. Crit Care Med. 2015;43(4):880–8. https://doi.org/10.1097/CCM.0000000000000819.

    Article  PubMed  Google Scholar 

  3. Lindenauer PK, Stefan MS, Shieh MS, Pekow PS, Rothberg MB, Hill NS. Hospital patterns of mechanical ventilation for patients with exacerbations of COPD. Ann Am Thorac Soc. 2015;12(3):402–9. https://doi.org/10.1513/AnnalsATS.201407-293OC.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weitz G, Struck J, Zonak A, Balnus S, Perras B, Dodt C. Prehospital noninvasive pressure support ventilation for acute cardiogenic pulmonary edema. Eur J Emerg Med. 2007;14(5):276–9. https://doi.org/10.1097/MEJ.0b013e32826fb377.

    Article  PubMed  Google Scholar 

  5. Liteplo AS, Murray AF, Kimberly HH, Noble VE. Real-time resolution of sonographic B-lines in a patient with pulmonary edema on continuous positive airway pressure. Am J Emerg Med. 2010;28(4):541. https://doi.org/10.1016/j.ajem.2009.08.013.

    Article  PubMed  Google Scholar 

  6. Giacomini M, Iapichino G, Cigada M, et al. Short-term noninvasive pressure support ventilation prevents ICU admittance in patients with acute cardiogenic pulmonary edema. Chest. 2003;123(6):2057–61. https://doi.org/10.1378/chest.123.6.2057.

    Article  PubMed  Google Scholar 

  7. Carteaux G, Millán-Guilarte T, De Prost N, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med. 2016;44(2):282–90. https://doi.org/10.1097/CCM.0000000000001379.

    Article  PubMed  Google Scholar 

  8. Duan J, Han X, Bai L, Zhou L, Huang S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 2017;43(2):192–9. https://doi.org/10.1007/s00134-016-4601-3.

    Article  CAS  PubMed  Google Scholar 

  9. Riera J, Perez P, Cortes J, Roca O, Masclans JR, Rello J. Effect of high-flow nasal cannula and body position on end-expiratory lung volume: a cohort study using electrical impedance tomography. Respir Care. 2013;58(4):589–96. https://doi.org/10.4187/respcare.02086.

    Article  PubMed  Google Scholar 

  10. Roca O, Pérez-Terán P, Masclans JR, et al. Patients with New York Heart Association class III heart failure may benefit with high flow nasal cannula supportive therapy. J Crit Care. 2013;28(5):741–6. https://doi.org/10.1016/j.jcrc.2013.02.007.

    Article  PubMed  Google Scholar 

  11. Williams R, Rankin N, Smith T, Galler D, Seakins P. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit Care Med. 1996;24(11):1920–9. https://doi.org/10.1097/00003246-199611000-00025.

    Article  CAS  PubMed  Google Scholar 

  12. Frat J-P, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–96. https://doi.org/10.1056/NEJMoa1503326.

    Article  CAS  PubMed  Google Scholar 

  13. Makdee O, Monsomboon A, Surabenjawong U, et al. High-flow nasal cannula versus conventional oxygen therapy in emergency department patients with cardiogenic pulmonary edema: a randomized controlled trial. Ann Emerg Med. 2017;70(4):465–472.e2. https://doi.org/10.1016/j.annemergmed.2017.03.028.

    Article  PubMed  Google Scholar 

  14. Jones PG, Kamona S, Doran O, Sawtell F, Wilsher M. Randomized controlled trial of humidified high-flow nasal oxygen for acute respiratory distress in the emergency department: the HOT-ER study. Respir Care. 2016;61(3):291–9. https://doi.org/10.4187/respcare.04252.

    Article  PubMed  Google Scholar 

  15. Zhao H, Wang H, Sun F, Lyu S, An Y. High-flow nasal cannula oxygen therapy is superior to conventional oxygen therapy but not to noninvasive mechanical ventilation on intubation rate: a systematic review and meta-analysis. Crit Care. 2017;21(1):184. https://doi.org/10.1186/s13054-017-1760-8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu Z, Li Y, Zhou J, et al. High-flow nasal cannula in adults with acute respiratory failure and after extubation: a systematic review and meta-analysis. Respir Res. 2018;19(1):202. https://doi.org/10.1186/s12931-018-0908-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Azoulay E, Lemiale V, Mokart D, et al. Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure. JAMA. 2018;320(20):2099. https://doi.org/10.1001/jama.2018.14282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang BJ, Koh Y, Lim CM, et al. Failure of high-flow nasal cannula therapy may delay intubation and increase mortality. Intensive Care Med. 2015;41(4):623–32. https://doi.org/10.1007/s00134-015-3693-5.

    Article  PubMed  Google Scholar 

  19. Messika J, Ben Ahmed K, Gaudry S, et al. Use of high-flow nasal cannula oxygen therapy in subjects with ARDS: A 1-year observational study. Respir Care. 2015;60(2):162–9. https://doi.org/10.4187/respcare.03423.

    Article  PubMed  Google Scholar 

  20. Sztrymf B, Messika J, Bertrand F, et al. Beneficial effects of humidified high flow nasal oxygen in critical care patients: a prospective pilot study. Intensive Care Med. 2011;37(11):1780–6. https://doi.org/10.1007/s00134-011-2354-6.

    Article  CAS  PubMed  Google Scholar 

  21. Vourc’h M, Asfar P, Volteau C, et al. High-flow nasal cannula oxygen during endotracheal intubation in hypoxemic patients: a randomized controlled clinical trial. Intensive Care Med. 2015;41(9):1538–48. https://doi.org/10.1007/s00134-015-3796-z.

    Article  CAS  PubMed  Google Scholar 

  22. Miguel-Montanes R, Hajage D, Messika J, et al. Use of high-flow nasal cannula oxygen therapy to prevent desaturation during tracheal intubation of intensive care patients with mild-to-moderate hypoxemia. Crit Care Med. 2015;43(3):574–83. https://doi.org/10.1097/CCM.0000000000000743.

    Article  CAS  PubMed  Google Scholar 

  23. Simon M, Wachs C, Braune S, de Heer G, Frings D, Kluge S. High-flow nasal cannula versus bag-valve-mask for preoxygenation before intubation in subjects with hypoxemic respiratory failure. Respir Care. 2016;61(9):1160–7. https://doi.org/10.4187/respcare.04413.

    Article  PubMed  Google Scholar 

  24. Hernández G, Vaquero C, González P, et al. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients: a randomized clinical trial. JAMA. 2016;315(13):1354–61. https://doi.org/10.1001/jama.2016.2711.

    Article  CAS  PubMed  Google Scholar 

  25. Hernández G, Vaquero C, Colinas L, et al. Effect of postextubation high-flownasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients a randomized clinical trial. JAMA. 2016;316(15):1565–74. https://doi.org/10.1001/jama.2016.14194.

    Article  CAS  PubMed  Google Scholar 

  26. Peters SG, Holets SR, Gay PC. Nasal high flow oxygen therapy in do-not-intubate patients with hypoxemic respiratory distress. Respir Care. 2012;58(4):597–600. https://doi.org/10.4187/respcare.01887.

    Article  Google Scholar 

  27. Carrillo A, Gonzalez-Diaz G, Ferrer M, et al. Non-invasive ventilation in community-acquired pneumonia and severe acute respiratory: EBSCOhost. Intensive Care Med. 2012;38(3):458–66. https://doi.org/10.1007/s00134-012-2475-6.

  28. Carron M, Freo U, Zorzi M, Ori C. Predictors of failure of noninvasive ventilation in patients with severe community-acquired pneumonia. J Crit Care. 2010;25(3):540.e9–14. https://doi.org/10.1016/j.jcrc.2010.02.012.

    Article  Google Scholar 

  29. Confalonieri MPA, Carbone G, Porta RD, Tolley EA, Meduri GU. Acute respiratory failure in patients with severe community acquired pneumonia: a prospective randomized evaluation of noninvasive ventilation. Am J Respir Crit Care Med. 1999;160(5 Pt 1):1585–91. http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=RelatedArticles&IdsFromResult=10556125&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum

    Article  CAS  Google Scholar 

  30. Wood KA, Lewis L, Von Harz B, Kollef MH. The use of noninvasive positive pressure ventilation in the emergency department: results of a randomized clinical trial. Chest. 1998;113(5):1339–46. https://doi.org/10.1378/chest.113.5.1339.

    Article  CAS  PubMed  Google Scholar 

  31. Ferrer M, Cosentini R, Nava S. The use of non-invasive ventilation during acute respiratory failure due to pneumonia. Eur J Intern Med. 2012;23(5):420–8. https://doi.org/10.1016/j.ejim.2012.02.011.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A. Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. Am J Respir Crit Care Med. 2003;168(12):1438–44. https://doi.org/10.1164/rccm.200301-072OC.

    Article  PubMed  Google Scholar 

  33. Cosentini R, Brambilla AM, Aliberti S, et al. Helmet continuous positive airway pressure vs oxygen therapy to improve oxygenation in community-acquired pneumonia: a randomized, controlled trial. Chest. 2010;138(1):114–20. https://doi.org/10.1378/chest.09-2290.

    Article  PubMed  Google Scholar 

  34. Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome a randomized clinical trial. JAMA. 2016;315(22):2435–41. https://doi.org/10.1001/jama.2016.6338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Antonelli M, Conti G, Bufi M, et al. Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial. JAMA. 2000;283(2):235–41. https://doi.org/10.1001/jama.283.2.235.

    Article  CAS  PubMed  Google Scholar 

  36. Hilbert G, Gruson D, Vargas F, et al. Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure. N Engl J Med. 2001;344(7):481–7. https://doi.org/10.1056/NEJM200102153440703.

    Article  CAS  PubMed  Google Scholar 

  37. Hilbert G, Gruson D, Vargas F, et al. Noninvasive continuous positive airway pressure in neutropenic patients with acute respiratory failure requiring intensive care unit admission. Crit Care Med. 2000;28(9):3185–90. https://doi.org/10.1097/00003246-200009000-00012.

    Article  CAS  PubMed  Google Scholar 

  38. Gristina GR, Antonelli M, Conti G, et al. Noninvasive versus invasive ventilation for acute respiratory failure in patients with hematologic malignancies: a 5-year multicenter observational survey. Crit Care Med. 2011;39(10):2232–9. https://doi.org/10.1097/CCM.0b013e3182227a27.

    Article  PubMed  Google Scholar 

  39. Brandao DC, Lima VM, Filho VG, et al. Reversal of bronchial obstruction with bi-level positive airway pressure and nebulization in patients with acute asthma. J Asthma. 2009;46(4):356–61. https://doi.org/10.1080/02770900902718829.

    Article  PubMed  Google Scholar 

  40. Gupta D, Nath A, Agarwal R, Behera D, et al. A prospective randomized controlled trial on the efficacy of noninvasive ventilation in severe acute asthma. Respir Care. 2010;55(5):536–43. https://doi.org/10.1111/j.2042-7158.2010.01134.x.

    Article  CAS  PubMed  Google Scholar 

  41. Lim WJ, Mohammed Akram R, Carson KV, et al. Non-invasive positive pressure ventilation for treatment of respiratory failure due to severe acute exacerbations of asthma. Cochrane Database Syst Rev. 2012;12:CD004360. https://doi.org/10.1002/14651858.CD004360.pub4.

    Article  PubMed  Google Scholar 

  42. Soroksky A, Stav D, Shpirer I. A pilot prospective, randomized, placebo-controlled trial of bilevel positive airway pressure in acute asthmatic attack. Chest. 2003;123(4):1018–25. https://doi.org/10.1378/chest.123.4.1018.

    Article  PubMed  Google Scholar 

  43. Landry A, Foran M, Koyfman A. Does noninvasive positive-pressure ventilation improve outcomes in severe asthma exacerbations? Ann Emerg Med. 2013;62(6):594–6. https://doi.org/10.1016/j.annemergmed.2013.05.021.

    Article  PubMed  Google Scholar 

  44. Pichot C, Petitjeans F, Ghignone M, Quintin L. Swift recovery of severe acute hypoxemic respiratory failure under non-invasive ventilation. Anestezjol Intens Ter. 2015;47(2):138–42. https://doi.org/10.5603/AIT.a2014.0053.

    Article  Google Scholar 

  45. Zhan Q, Sun B, Liang L, et al. Early use of noninvasive positive pressure ventilation for acute lung injury: a multicenter randomized controlled trial. Crit Care Med. 2012;40(2):455–60. https://doi.org/10.1097/CCM.0b013e318232d75e.

    Article  PubMed  Google Scholar 

  46. Luo J, Wang MY, Zhu H, et al. Can non-invasive positive pressure ventilation prevent endotracheal intubation in acute lung injury/acute respiratory distress syndrome? A meta-analysis. Respirology. 2014;19(8):1149–57. https://doi.org/10.1111/resp.12383.

    Article  PubMed  Google Scholar 

  47. Rana S, Jenad H, Gay PC, Buck CF, Hubmayr RD, Gajic O. Failure of non-invasive ventilation in patients with acute lung injury: Observational cohort study. Crit Care. 2006;10(3):R79. https://doi.org/10.1186/cc4923.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bellani G, Laffey JG, Pham T, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome: insights from the LUNG SAFE study. Am J Respir Crit Care Med. 2017;195(1):67–77. https://doi.org/10.1164/rccm.201606-1306OC.

    Article  PubMed  Google Scholar 

  49. Díaz GG, Alcaraz AC, Talavera JCP, et al. Noninvasive positive-pressure ventilation to treat hypercapnic coma secondary to respiratory failure. Chest. 2005;127(3):952–60. https://doi.org/10.1378/chest.127.3.952.

    Article  PubMed  Google Scholar 

  50. Scala R. Hypercapnic encephalopathy syndrome: a new frontier for non-invasive ventilation? Respir Med. 2011;105(8):1109–17. https://doi.org/10.1016/j.rmed.2011.02.004.

    Article  PubMed  Google Scholar 

  51. Weingart SD, Seth Trueger N, Wong N, Scofi J, Singh N, Rudolph SS. Delayed sequence intubation: a prospective observational study. Ann Emerg Med. 2015;65(4):349–55. https://doi.org/10.1016/j.annemergmed.2014.09.025.

    Article  PubMed  Google Scholar 

  52. Baillard C, Fosse JP, Sebbane M, et al. Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Respir Crit Care Med. 2006;174(2):171–7. https://doi.org/10.1164/rccm.200509-1507OC.

    Article  PubMed  Google Scholar 

  53. Baillard C, Prat G, Jung B, et al. Effect of preoxygenation using non-invasive ventilation before intubation on subsequent organ failures in hypoxaemic patients: a randomised clinical trial. Br J Anaesth. 2018;120(2):361–7. https://doi.org/10.1016/j.bja.2017.11.067.

    Article  CAS  PubMed  Google Scholar 

  54. Burns KE, Meade MO, Premji A, Adhikari NK. Noninvasive positive-pressure ventilation as a weaning strategy for intubated adults with respiratory failure. Cochrane Database Syst Rev. 2013;12:CD004127. https://doi.org/10.1002/14651858.CD004127.pub3.

    Article  Google Scholar 

  55. Ornico SR, Lobo SM, Sanches HS, et al. Noninvasive ventilation immediately after extubation improves weaning outcome after acute respiratory failure: a randomized controlled trial. Crit Care. 2013;17(2):R39. https://doi.org/10.1186/cc12549.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vaschetto R, Turucz E, Dellapiazza F, et al. Noninvasive ventilation after early extubation in patients recovering from hypoxemic acute respiratory failure: a single-centre feasibility study. Intensive Care Med. 2012;38(10):1599–606. https://doi.org/10.1007/s00134-012-2652-7.

    Article  PubMed  Google Scholar 

  57. Azoulay É, Kouatchet A, Jaber S, et al. Noninvasive mechanical ventilation in patients having declined tracheal intubation. Intensive Care Med. 2013;39(2):292–301. https://doi.org/10.1007/s00134-012-2746-2.

    Article  PubMed  Google Scholar 

  58. Nava S, Ferrer M, Esquinas A, et al. Palliative use of non-invasive ventilation in end-of-life patients with solid tumours: a randomised feasibility trial. Lancet Oncol. 2013;14(3):219–27. https://doi.org/10.1016/S1470-2045(13)70009-3.

    Article  PubMed  Google Scholar 

  59. Azoulay É, Demoule A, Jaber S, et al. Palliative noninvasive ventilation in patients with acute respiratory failure. Intensive Care Med. 2011;37(8):1250–7. https://doi.org/10.1007/s00134-011-2263-8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Fung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fung, C., Hackenson, D. (2020). Acute Respiratory Failure: Non-invasive Ventilation and High Flow Nasal Cannula. In: Hyzy, R.C., McSparron, J. (eds) Evidence-Based Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-030-26710-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26710-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26709-4

  • Online ISBN: 978-3-030-26710-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics