Skip to main content

Post-cardiac Arrest Management

  • Chapter
  • First Online:
Evidence-Based Critical Care
  • 644 Accesses

Abstract

This chapter will review the elements of cardiac arrest resuscitation that begin after return of spontaneous circulation (ROSC). In-hospital mortality of patients who achieve ROSC long enough to be admitted to an intensive care unit (ICU) averages 60% with wide inter-institutional variability (40–80%) (Carr et al., Resuscitation 80:30–34, 2009; Straney et al., Crit Care Resusc 16:104–111, 2014; Nolan et al., Crit Care 20:219, 2016). The pathophysiology of post-cardiac arrest syndrome (PCAS) is composed of four major components: post-cardiac arrest brain injury, post-cardiac arrest myocardial dysfunction, systemic ischemia/reperfusion response, and persistent precipitating pathology (Neumar et al., Circulation 118:2452–2483, 2008). It is important to recognize that each component is potentially reversible and responsive to therapy. A comprehensive multidisciplinary management strategy that addresses all components of PCAS is critical to achieve optimal patient outcome. In addition, a reliable multimodal strategy to prognosticate neurologic outcome in comatose patients is essential to prevent premature cessation of care and enable appropriate resource utilization (Callaway et al., Circulation 132:S465–S482, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neumar RW, Nolan JP, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008;118(23):2452–83.

    PubMed  Google Scholar 

  2. Laver S, Farrow C, Turner D, et al. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30(11):2126–8.

    PubMed  Google Scholar 

  3. Pulsinelli WA. Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res. 1985;63:29–37.

    CAS  PubMed  Google Scholar 

  4. Brierley JB, Meldrum BS, Brown AW. The threshold and neuropathology of cerebral “anoxic-ischemic” cell change. Arch Neurol. 1973;29(6):367–74.

    CAS  PubMed  Google Scholar 

  5. Blomqvist P, Wieloch T. Ischemic brain damage in rats following cardiac arrest using a long-term recovery model. J Cereb Blood Flow Metab. 1985;5(3):420–31.

    CAS  PubMed  Google Scholar 

  6. Taraszewska A, Zelman IB, Ogonowska W, et al. The pattern of irreversible brain changes after cardiac arrest in humans. Folia Neuropathol. 2002;40(3):133–41.

    PubMed  Google Scholar 

  7. Hossmann KA, Oschlies U, Schwindt W, et al. Electron microscopic investigation of rat brain after brief cardiac arrest. Acta Neuropathol. 2001;101(2):101–13.

    CAS  PubMed  Google Scholar 

  8. Neumar RW. Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med. 2000;36(5):483–506.

    CAS  PubMed  Google Scholar 

  9. Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79(4):1431–568.

    CAS  PubMed  Google Scholar 

  10. Bano D, Nicotera P. Ca2+ signals and neuronal death in brain ischemia. Stroke. 2007;38(2):674–6.

    CAS  PubMed  Google Scholar 

  11. Herlitz J, Ekstrom L, Wennerblom B, et al. Hospital mortality after out-of-hospital cardiac arrest among patients found in ventricular fibrillation. Resuscitation. 1995;29(1):11–21.

    CAS  PubMed  Google Scholar 

  12. Laurent I, Monchi M, Chiche JD, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40(12):2110–6.

    PubMed  Google Scholar 

  13. Kern KB, Hilwig RW, Berg RA, et al. Postresuscitation left ventricular systolic and diastolic dysfunction. Treatment with dobutamine. Circulation. 1997;95(12):2610–3.

    CAS  PubMed  Google Scholar 

  14. Huang L, Weil MH, Tang W, et al. Comparison between dobutamine and levosimendan for management of postresuscitation myocardial dysfunction. Crit Care Med. 2005;33(3):487–91.

    CAS  PubMed  Google Scholar 

  15. Cerchiari EL, Safar P, Klein E, et al. Visceral, hematologic and bacteriologic changes and neurologic outcome after cardiac arrest in dogs. The visceral post-resuscitation syndrome. Resuscitation. 1993;25(2):119–36.

    CAS  PubMed  Google Scholar 

  16. Adams JA. Endothelium and cardiopulmonary resuscitation. Crit Care Med. 2006;34(12):S458–65.

    PubMed  Google Scholar 

  17. Adrie C, Adib-Conquy M, Laurent I, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation. 2002;106(5):562–8.

    PubMed  Google Scholar 

  18. Adrie C, Laurent I, Monchi M, et al. Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr Opin Crit Care. 2004;10(3):208–12.

    PubMed  Google Scholar 

  19. Gando S, Nanzaki S, Morimoto Y, et al. Out-of-hospital cardiac arrest increases soluble vascular endothelial adhesion molecules and neutrophil elastase associated with endothelial injury. Intensive Care Med. 2000;26(1):38–44.

    CAS  PubMed  Google Scholar 

  20. Geppert A, Zorn G, Karth GD, et al. Soluble selectins and the systemic inflammatory response syndrome after successful cardiopulmonary resuscitation. Crit Care Med. 2000;28(7):2360–5.

    CAS  PubMed  Google Scholar 

  21. Bottiger BW, Motsch J, Bohrer H, et al. Activation of blood coagulation after cardiac arrest is not balanced adequately by activation of endogenous fibrinolysis. Circulation. 1995;92(9):2572–8.

    CAS  PubMed  Google Scholar 

  22. Adrie C, Monchi M, Laurent I, et al. Coagulopathy after successful cardiopulmonary resuscitation following cardiac arrest: implication of the protein C anticoagulant pathway. J Am Coll Cardiol. 2005;46(1):21–8.

    PubMed  Google Scholar 

  23. Hekimian G, Baugnon T, Thuong M, et al. Cortisol levels and adrenal reserve after successful cardiac arrest resuscitation. Shock. 2004;22(2):116–9.

    CAS  PubMed  Google Scholar 

  24. Schultz CH, Rivers EP, Feldkamp CS, et al. A characterization of hypothalamic-pituitary-adrenal axis function during and after human cardiac arrest. Crit Care Med. 1993;21(9):1339–47.

    CAS  PubMed  Google Scholar 

  25. Gaieski DF, Band RA, Abella BS, et al. Early goal-directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation. 2009;80(4):418–24.

    PubMed  Google Scholar 

  26. Sunde K, Pytte M, Jacobsen D, et al. Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation. 2007;73(1):29–39.

    PubMed  Google Scholar 

  27. Sundgreen C, Larsen FS, Herzog TM, et al. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke. 2001;32(1):128–32.

    CAS  PubMed  Google Scholar 

  28. Kilgannon JH, Roberts BW, Reihl LR, et al. Early arterial hypotension is common in the post-cardiac arrest syndrome and associated with increased in-hospital mortality. Resuscitation. 2008;79(3):410–6.

    PubMed  PubMed Central  Google Scholar 

  29. Beylin ME, Perman SM, Abella BS, et al. Higher mean arterial pressure with or without vasoactive agents is associated with increased survival and better neurological outcomes in comatose survivors of cardiac arrest. Intensive Care Med. 2013;39(11):1981–8.

    CAS  PubMed  Google Scholar 

  30. Kilgannon JH, Roberts BW, Jones AE, et al. Arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest∗. Crit Care Med. 2014;42(9):2083–91.

    PubMed  Google Scholar 

  31. Oddo M, Schaller MD, Feihl F, et al. From evidence to clinical practice: effective implementation of therapeutic hypothermia to improve patient outcome after cardiac arrest. Crit Care Med. 2006;34(7):1865–73.

    PubMed  Google Scholar 

  32. Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63.

    PubMed  Google Scholar 

  33. Roberts BW, Kilgannon JH, Hunter BR, et al. Association between elevated mean arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest: results from a multicenter prospective cohort study. Crit Care Med. 2019;47(1):93–100.

    PubMed  PubMed Central  Google Scholar 

  34. Kilgannon JH, Jones AE, Parrillo JE, et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123(23):2717–22.

    CAS  PubMed  Google Scholar 

  35. Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71.

    CAS  PubMed  Google Scholar 

  36. Roberts BW, Kilgannon JH, Chansky ME, et al. Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation. 2013;127(21):2107–13.

    CAS  PubMed  Google Scholar 

  37. Roberts BW, Kilgannon JH, Hunter BR, et al. Association between early hyperoxia exposure after resuscitation from cardiac arrest and neurological disability: prospective multicenter protocol-directed cohort study. Circulation. 2018;137(20):2114–24.

    PubMed  PubMed Central  Google Scholar 

  38. Trzeciak S, Jones AE, Kilgannon JH, et al. Significance of arterial hypotension after resuscitation from cardiac arrest. Crit Care Med. 2009;37(11):2895–903. quiz 2904

    PubMed  Google Scholar 

  39. Simons RW, Rea TD, Becker LJ, et al. The incidence and significance of emesis associated with out-of-hospital cardiac arrest. Resuscitation. 2007;74(3):427–31.

    PubMed  Google Scholar 

  40. Cha KC, Kim YW, Kim HI, et al. Parenchymal lung injuries related to standard cardiopulmonary resuscitation. Am J Emerg Med. 2017;35(1):117–21.

    PubMed  Google Scholar 

  41. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36.

    CAS  PubMed  Google Scholar 

  42. Peberdy MA, Callaway CW, Neumar RW, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S768–86.

    PubMed  Google Scholar 

  43. Perbet S, Mongardon N, Dumas F, et al. Early-onset pneumonia after cardiac arrest: characteristics, risk factors and influence on prognosis. Am J Respir Crit Care Med. 2011;184(9):1048–54.

    PubMed  Google Scholar 

  44. Hellenkamp K, Onimischewski S, Kruppa J, et al. Early pneumonia and timing of antibiotic therapy in patients after nontraumatic out-of-hospital cardiac arrest. Crit Care. 2016;20:31.

    PubMed  PubMed Central  Google Scholar 

  45. Girardis M, Busani S, Damiani E, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016;316(15):1583–9.

    CAS  PubMed  Google Scholar 

  46. Kagstrom E, Smith ML, Siesjo BK. Cerebral circulatory responses to hypercapnia and hypoxia in the recovery period following complete and incomplete cerebral ischemia in the rat. Acta Physiol Scand. 1983;118(3):281–91.

    CAS  PubMed  Google Scholar 

  47. Buunk G, van der Hoeven JG, Meinders AE. Cerebrovascular reactivity in comatose patients resuscitated from a cardiac arrest. Stroke. 1997;28(8):1569–73.

    CAS  PubMed  Google Scholar 

  48. McKenzie N, Williams TA, Tohira H, et al. A systematic review and meta-analysis of the association between arterial carbon dioxide tension and outcomes after cardiac arrest. Resuscitation. 2017;111:116–26.

    PubMed  Google Scholar 

  49. Johnson NJ, Carlbom DJ, Gaieski DF. Ventilator management and respiratory care after cardiac arrest: oxygenation, ventilation, infection, and injury. Chest. 2018;153(6):1466–77.

    PubMed  Google Scholar 

  50. Sutherasan Y, Penuelas O, Muriel A, et al. Management and outcome of mechanically ventilated patients after cardiac arrest. Crit Care. 2015;19:215.

    PubMed  PubMed Central  Google Scholar 

  51. Callaway CW, Donnino MW, Fink EL, et al. Part 8: Post-Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132(18 Suppl 2):S465–82.

    PubMed  PubMed Central  Google Scholar 

  52. Kirkegaard H, Soreide E, de Haas I, et al. Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2017;318(4):341–50.

    PubMed  PubMed Central  Google Scholar 

  53. Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.

    CAS  PubMed  Google Scholar 

  54. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.

    Google Scholar 

  55. Glover GW, Thomas RM, Vamvakas G, et al. Intravascular versus surface cooling for targeted temperature management after out-of-hospital cardiac arrest—an analysis of the TTM trial data. Crit Care. 2016;20(1):381.

    PubMed  PubMed Central  Google Scholar 

  56. Badjatia N. Therapeutic hypothermia protocols. Handb Clin Neurol. 2017;141:619–32.

    CAS  PubMed  Google Scholar 

  57. Polderman KH. Of ions and temperature: the complicated interplay of temperature, fluids, and electrolytes on myocardial function. Crit Care. 2013;17(6):1018.

    PubMed  PubMed Central  Google Scholar 

  58. Losert H, Sterz F, Roine RO, et al. Strict normoglycaemic blood glucose levels in the therapeutic management of patients within 12h after cardiac arrest might not be necessary. Resuscitation. 2008;76(2):214–20.

    PubMed  Google Scholar 

  59. Borgquist O, Wise MP, Nielsen N, et al. Dysglycemia, glycemic variability, and outcome after cardiac arrest and temperature management at 33 degrees C and 36 degrees C. Crit Care Med. 2017;45(8):1337–43.

    PubMed  Google Scholar 

  60. Longstreth WT Jr, Diehr P, Cobb LA, et al. Neurologic outcome and blood glucose levels during out-of-hospital cardiopulmonary resuscitation. Neurology. 1986;36(9):1186–91.

    PubMed  Google Scholar 

  61. Skrifvars MB, Pettila V, Rosenberg PH, et al. A multiple logistic regression analysis of in-hospital factors related to survival at six months in patients resuscitated from out-of-hospital ventricular fibrillation. Resuscitation. 2003;59(3):319–28.

    CAS  PubMed  Google Scholar 

  62. Oksanen T, Skrifvars MB, Varpula T, et al. Strict versus moderate glucose control after resuscitation from ventricular fibrillation. Intensive Care Med. 2007;33(12):2093–100.

    CAS  PubMed  Google Scholar 

  63. Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg. 2009;109(2):506–23.

    PubMed  Google Scholar 

  64. Callaway CW, Soar J, Aibiki M, et al. Part 4: advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2015;132(16 Suppl 1):S84–145.

    PubMed  Google Scholar 

  65. Grossestreuer AV, Abella BS, Leary M, et al. Time to awakening and neurologic outcome in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation. 2013;84(12):1741–6.

    PubMed  Google Scholar 

  66. Mulder M, Gibbs HG, Smith SW, et al. Awakening and withdrawal of life-sustaining treatment in cardiac arrest survivors treated with therapeutic hypothermia∗. Crit Care Med. 2014;42(12):2493–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Eid SM, Albaeni A, Vaidya D, et al. Awakening following cardiac arrest: Determined by the definitions used or the therapies delivered? Resuscitation. 2016;100:38–44.

    PubMed  Google Scholar 

  68. Ponz I, Lopez-de-Sa E, Armada E, et al. Influence of the temperature on the moment of awakening in patients treated with therapeutic hypothermia after cardiac arrest. Resuscitation. 2016;103:32–6.

    PubMed  Google Scholar 

  69. Paul M, Bougouin W, Geri G, et al. Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry. Intensive Care Med. 2016;42(7):1128–36.

    CAS  PubMed  Google Scholar 

  70. Zanyk-McLean K, Sawyer KN, Paternoster R, et al. Time to awakening is often delayed in patients who receive targeted temperature management after cardiac arrest. Ther Hypothermia Temp Manag. 2017;7(2):95–100.

    PubMed  Google Scholar 

  71. Sandroni C, Cariou A, Cavallaro F, et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation. 2014;85(12):1779–89.

    PubMed  Google Scholar 

  72. Cronberg T, Brizzi M, Liedholm LJ, et al. Neurological prognostication after cardiac arrest—recommendations from the Swedish Resuscitation Council. Resuscitation. 2013;84(7):867–72.

    PubMed  Google Scholar 

  73. Orioles A, Morrison WE, Rossano JW, et al. An under-recognized benefit of cardiopulmonary resuscitation: organ transplantation. Crit Care Med. 2013;41(12):2794–9.

    PubMed  Google Scholar 

  74. Sandroni C, D’Arrigo S, Callaway CW, et al. The rate of brain death and organ donation in patients resuscitated from cardiac arrest: a systematic review and meta-analysis. Intensive Care Med. 2016;42(11):1661–71.

    PubMed  PubMed Central  Google Scholar 

  75. Callaway CW, Schmicker RH, Brown SP, et al. Early coronary angiography and induced hypothermia are associated with survival and functional recovery after out-of-hospital cardiac arrest. Resuscitation. 2014;85(5):657–63.

    PubMed  PubMed Central  Google Scholar 

  76. Dumas F, Bougouin W, Geri G, et al. Emergency percutaneous coronary intervention in post-cardiac arrest patients without ST-segment elevation pattern: insights from the PROCAT II registry. JACC Cardiovasc Interv. 2016;9(10):1011–8.

    PubMed  Google Scholar 

  77. Kern KB, Lotun K, Patel N, et al. Outcomes of comatose cardiac arrest survivors with and without ST-segment elevation myocardial infarction: importance of coronary angiography. JACC Cardiovasc Interv. 2015;8(8):1031–40.

    PubMed  Google Scholar 

  78. Spaulding CM, Joly LM, Rosenberg A, et al. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med. 1997;336(23):1629–33.

    CAS  PubMed  Google Scholar 

  79. Yannopoulos D, Bartos JA, Raveendran G, et al. Coronary artery disease in patients with out-of-hospital refractory ventricular fibrillation cardiac arrest. J Am Coll Cardiol. 2017;70(9):1109–17.

    PubMed  Google Scholar 

  80. Lemkes JS, Janssens GN, van der Hoeven NW, et al. Coronary angiography after cardiac arrest without ST-segment elevation. N Engl J Med. 2019;381(2):189–90.

    PubMed  Google Scholar 

  81. Yannopoulos D, Bartos JA, Aufderheide TP, et al. The evolving role of the cardiac catheterization laboratory in the management of patients with out-of-hospital cardiac arrest: a scientific statement from the American Heart Association. Circulation. 2019;139(12):e530–52.

    PubMed  Google Scholar 

  82. Testori C, Sterz F, Behringer W, et al. Mild therapeutic hypothermia is associated with favourable outcome in patients after cardiac arrest with non-shockable rhythms. Resuscitation. 2011;82(9):1162–7.

    PubMed  Google Scholar 

  83. Perman SM, Grossestreuer AV, Wiebe DJ, et al. The utility of therapeutic hypothermia for post-cardiac arrest syndrome patients with an initial nonshockable rhythm. Circulation. 2015;132(22):2146–51.

    PubMed  PubMed Central  Google Scholar 

  84. Che D, Li L, Kopil CM, et al. Impact of therapeutic hypothermia onset and duration on survival, neurologic function, and neurodegeneration after cardiac arrest. Crit Care Med. 2011;39(6):1423–30.

    PubMed  PubMed Central  Google Scholar 

  85. Kim T, Paine MG, Meng H, et al. Combined intra- and post-cardiac arrest hypothermic-targeted temperature management in a rat model of asphyxial cardiac arrest improves survival and neurologic outcome compared to either strategy alone. Resuscitation. 2016;107:94–101.

    PubMed  Google Scholar 

  86. Sterz F, Safar P, Tisherman S, et al. Mild hypothermic cardiopulmonary resuscitation improves outcome after prolonged cardiac arrest in dogs. Crit Care Med. 1991;19(3):379–89.

    CAS  PubMed  Google Scholar 

  87. Kuboyama K, Safar P, Radovsky A, et al. Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med. 1993;21(9):1348–58.

    CAS  PubMed  Google Scholar 

  88. Abella BS, Zhao D, Alvarado J, et al. Intra-arrest cooling improves outcomes in a murine cardiac arrest model. Circulation. 2004;109(22):2786–91.

    PubMed  Google Scholar 

  89. Nozari A, Safar P, Stezoski SW, et al. Critical time window for intra-arrest cooling with cold saline flush in a dog model of cardiopulmonary resuscitation. Circulation. 2006;113(23):2690–6.

    PubMed  Google Scholar 

  90. Zhao D, Abella BS, Beiser DG, et al. Intra-arrest cooling with delayed reperfusion yields higher survival than earlier normothermic resuscitation in a mouse model of cardiac arrest. Resuscitation. 2008;77(2):242–9.

    PubMed  Google Scholar 

  91. Bernard SA, Smith K, Cameron P, et al. Induction of therapeutic hypothermia by paramedics after resuscitation from out-of-hospital ventricular fibrillation cardiac arrest: a randomized controlled trial. Circulation. 2010;122(7):737–42.

    PubMed  Google Scholar 

  92. Kim F, Nichol G, Maynard C, et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA. 2014;311(1):45–52.

    CAS  PubMed  Google Scholar 

  93. Bray JE, Stub D, Bloom JE, et al. Changing target temperature from 33 degrees C to 36 °C in the ICU management of out-of-hospital cardiac arrest: a before and after study. Resuscitation. 2017;113:39–43.

    PubMed  Google Scholar 

  94. Salter R, Bailey M, Bellomo R, et al. Changes in temperature management of cardiac arrest patients following publication of the target temperature management trial. Crit Care Med. 2018;46(11):1722–30.

    PubMed  Google Scholar 

  95. Thiele H, Zeymer U, Neumann FJ, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.

    CAS  PubMed  Google Scholar 

  96. Thiele H, Zeymer U, Neumann FJ, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet. 2013;382(9905):1638–45.

    PubMed  Google Scholar 

  97. Stub D, Bernard S, Pellegrino V, et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation. 2015;86:88–94.

    PubMed  Google Scholar 

  98. Carr BG, Kahn JM, Merchant RM, et al. Inter-hospital variability in post-cardiac arrest mortality. Resuscitation. 2009;80(1):30–4.

    PubMed  Google Scholar 

  99. Straney LD, Bray JE, Finn J, et al. Trends in intensive care unit cardiac arrest admissions and mortality in Australia and New Zealand. Crit Care Resusc. 2014;16(2):104–11.

    PubMed  Google Scholar 

  100. Nolan JP, Ferrando P, Soar J, et al. Increasing survival after admission to UK critical care units following cardiopulmonary resuscitation. Crit Care. 2016;20(1):219.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Westhall E, Rossetti A, van Rootselaar A. Standardized EEG interpretation accurately predicts progno sis after cardiac arrest. Neurology. 2016;86(16):1482–90.

    Google Scholar 

  102. Lascarrou J-B, Merdji H, Le Gouge A, et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019;381(24):2327–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy H. Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hsu, C.H., Neumar, R.W. (2020). Post-cardiac Arrest Management. In: Hyzy, R.C., McSparron, J. (eds) Evidence-Based Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-030-26710-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26710-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26709-4

  • Online ISBN: 978-3-030-26710-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics