Skip to main content

Fundamentals of Wireless Power Transfer

  • Chapter
  • First Online:

Part of the book series: Power Systems ((POWSYS))

Abstract

Wireless power transfer comprises a set of heterogeneous technologies. Their correct applicability depends on the power requirements and the scenario in which it is expected to be used (position between transmitter and receiver, separation between them, electronics dimensions, etc.). First, this chapter describes how wireless power transfer systems have evolved. Then, the main operating principles of the wireless power techniques are explained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Energous WattUp® Wire-Free Charging Technology. http://energous.com/

  2. Energy Research | Navigant Research. https://www.navigantresearch.com/

  3. IHS Markit | Leading Source of Critical Information. https://ihsmarkit.com/index.html

  4. Ossia: Proven Wireless Power Technology You Can Use Today. http://www.ossia.com/

  5. Technology - Long Range Wireless Power Transmission | Wi-Charge.com. https://www.wi-charge.com/technology/

  6. Wireless Power Products - Powercastco.com. https://www.powercastco.com/

  7. Chow, J.P.W., Chung, H.S.H., Cheng, C.S.: Online regulation of receiver-side power and estimation of mutual inductance in wireless inductive link based on transmitter-side electrical information. In: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1795–1801. IEEE (2016). https://doi.org/10.1109/APEC.2016.7468111.http://ieeexplore.ieee.org/document/7468111/

  8. Dai, J., Ludois, D.C.: A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 30(11), 6017–6029 (2015). https://doi.org/10.1109/TPEL.2015.2415253, http://ieeexplore.ieee.org/document/7064773/

    Article  Google Scholar 

  9. Gibbs, Y.: NASA Dryden Fact Sheets - Beamed Laser Power (2015). https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-087-DFRC.html

  10. Jeong, S.Y., Thai, V.X., Park, J.H., Rim, C.T.: Self-inductance-based metal object detection with mistuned resonant circuits and nullifying induced voltage for wireless EV chargers. IEEE Trans. Power Electron. 34(1), 748–758 (2019). https://doi.org/10.1109/TPEL.2018.2813437, https://ieeexplore.ieee.org/document/8309279/

    Article  Google Scholar 

  11. Jin, K., Zhou, W.: Wireless laser power transmission: a review of recent progress. IEEE Trans. Power Electron. 34(4), 3842–3859 (2019). https://doi.org/10.1109/TPEL.2018.2853156. https://ieeexplore.ieee.org/document/8404085/

    Article  Google Scholar 

  12. Kalwar, K.A., Aamir, M., Mekhilef, S.: Inductively coupled power transfer (ICPT) for electric vehicle charging A review. Renew. Sustain. Energy Rev. 47, 462–475 (2015). https://doi.org/10.1016/J.RSER.2015.03.040, https://www.sciencedirect.com/science/article/pii/S1364032115001938

    Article  Google Scholar 

  13. Kim, H.J., Hirayama, H., Kim, S., Han, K.J., Zhang, R., Choi, J.W.: Review of near-field wireless power and communication for biomedical applications. IEEE Access 5, 21,264–21,285 (2017). https://doi.org/10.1109/ACCESS.2017.2757267, http://ieeexplore.ieee.org/document/8052089/

    Article  Google Scholar 

  14. Kisseleff, S., Chen, X., Akyildiz, I.F., Gerstacker, W.H.: Efficient charging of access limited wireless underground sensor networks. IEEE Trans. Commun. 64(5), 2130–2142 (2016). https://doi.org/10.1109/TCOMM.2016.2550435, http://ieeexplore.ieee.org/document/7447753/

    Article  Google Scholar 

  15. Lu, K., Nguang, S.K., Ji, S., Wei, L.: Design of auto frequency tuning capacitive power transfer system based on class-E2 dc/dc converter. IET Power Electron. 10(12), 1588–1595 (2017). https://doi.org/10.1049/iet-pel.2016.0655, http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2016.0655

    Article  Google Scholar 

  16. Massa, A., Oliveri, G., Viani, F., Rocca, P.: Array designs for long-distance wireless power transmission: state-of-the-art and innovative solutions. Proc. IEEE 101(6), 1464–1481 (2013). https://doi.org/10.1109/JPROC.2013.2245491, http://ieeexplore.ieee.org/document/6472725/

    Article  Google Scholar 

  17. Mirbozorgi, S.A., Bahrami, H., Sawan, M., Gosselin, B.: A smart multicoil inductively coupled array for wireless power transmission. IEEE Trans. Ind. Electron. 61(11), 6061–6070 (2014). https://doi.org/10.1109/TIE.2014.2308138, http://ieeexplore.ieee.org/document/6748029/

    Article  Google Scholar 

  18. Pavo, J., Badics, Z., Bilicz, S., Gyimothy, S.: Efficient perturbation method for computing two-port parameter changes due to foreign objects for WPT systems. IEEE Trans. Magn. 54(3), 1–4 (2018). https://doi.org/10.1109/TMAG.2017.2771511, http://ieeexplore.ieee.org/document/8122030/

    Article  Google Scholar 

  19. Popovic, Z.: Cut the cord: low-power far-field wireless powering. IEEE Microw. Mag. 14(2), 55–62 (2013). https://doi.org/10.1109/MMM.2012.2234638, http://ieeexplore.ieee.org/document/6475366/

    Article  Google Scholar 

  20. Sasaki, S., Tanaka, K.: Wireless power transmission technologies for solar power satellite. In: 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, pp. 3–6. IEEE (2011). https://doi.org/10.1109/IMWS.2011.5877137, http://ieeexplore.ieee.org/document/5877137/

  21. Thrimawithana, D.J., Madawala, U.K.: A primary side controller for inductive power transfer systems. In: 2010 IEEE International Conference on Industrial Technology, pp. 661–666. IEEE (2010). https://doi.org/10.1109/ICIT.2010.5472724, http://ieeexplore.ieee.org/document/5472724/

  22. Triviño-Cabrera, A., Aguado-Sánchez, J.: A review on the fundamentals and practical implementation details of strongly coupled magnetic resonant technology for wireless power transfer. Energies 11(10), 2844 (2018). https://doi.org/10.3390/en11102844, http://www.mdpi.com/1996-1073/11/10/2844

    Article  Google Scholar 

  23. Triviño-Cabrera, A., Lin, Z., Aguado, J.: Impact of coil misalignment in data transmission over the inductive link of an EV wireless charger. Energies 11(3), 538 (2018). https://doi.org/10.3390/en11030538, http://www.mdpi.com/1996-1073/11/3/538

    Article  Google Scholar 

  24. Trivino-Cabrera, A., Ochoa, M., Fernandez, D., Aguado, J.A.: Independent primary-side controller applied to wireless chargers for electric vehicles. In: 2014 IEEE International Electric Vehicle Conference (IEVC), pp. 1–5. IEEE (2014). https://doi.org/10.1109/IEVC.2014.7056193, http://ieeexplore.ieee.org/document/7056193/

  25. Yan, Z., Zhang, Y., Kan, T., Lu, F., Zhang, K., Song, B., Mi, C.C.: Frequency optimization of a loosely coupled underwater wireless power transfer system considering eddy current loss. IEEE Trans. Ind. Electron. 66(5), 3468–3476 (2019). https://doi.org/10.1109/TIE.2018.2851947, https://ieeexplore.ieee.org/document/8408696/

    Article  Google Scholar 

  26. Zhang, Z., Chau, K.T., Qiu, C., Liu, C.: Energy encryption for wireless power transfer. IEEE Trans. Power Electron. 30(9), 5237–5246 (2015). https://doi.org/10.1109/TPEL.2014.2363686, http://ieeexplore.ieee.org/document/6928497/

    Article  Google Scholar 

  27. Zhou, W., Jin, K.: Efficiency evaluation of laser diode in different driving modes for wireless power transmission. IEEE Trans. Power Electron. 30(11), 6237–6244 (2015). https://doi.org/10.1109/TPEL.2015.2411279, http://ieeexplore.ieee.org/document/7056428/

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Triviño-Cabrera .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Triviño-Cabrera, A., González-González, J.M., Aguado, J.A. (2020). Fundamentals of Wireless Power Transfer. In: Wireless Power Transfer for Electric Vehicles: Foundations and Design Approach. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-26706-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26706-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26705-6

  • Online ISBN: 978-3-030-26706-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics