Skip to main content

Polymer Nanocomposites: Synthesis and Characterization

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 32))

Abstract

This chapter presents the fundamental properties of polymer nanocomposites (PNCs) and their characteristics that play a significant role in deciding their capability for the advanced energy storage devices. The various synthesization methods used for the preparation of polymer electrolytes are described followed by the characterization techniques used for the analysis. The properties of the polymer host, salt, nanofiller, ionic liquid, plasticizer, and nanoclay–nanorod–nanowire are described. Various ion transport mechanisms with different nanoparticle dispersions in polymer electrolytes are highlighted. Various important results are summarized, and a pathway is built to fulfill the dream of the future renewable source of energy that is economical and environmental benign. Chapter motivation is focused on the investigation of the role of polymer host, aspect ratio, surface area, nanoparticle shape, and size in terms of boosting the electrolytic–electrochemical properties of PNC. It will certainly help in order to open new doors toward the development of advanced polymeric materials with overall balancing property for enhancement of the fast solid-state ionic conductor which would revolutionize the energy storage–conversion device technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal RC, Chandra A (2007) Ion transport and electrochemical cell performance studies on hot-press-synthesized Ag+ ion conducting electroactive polymeric membranes:(1− x) PEO: x [0.7 (0.75 AgI: 0.25 AgCl): 0.3 MI]. J Phys D Appl Phys 40(22):7024

    Article  CAS  Google Scholar 

  • Ahmed S, Mehmood M, Iqbal R (2010) Influence of dioctyl phthalate (DOP) on the mechanical, optical and thermal properties of formulations for the industrial manufacture of radiation sterilizable medical disposables. Radiat Phys Chem 79:339–342

    Article  CAS  Google Scholar 

  • Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  Google Scholar 

  • Arora P, Zhang Z (2004) Battery separators. Chem Rev 104(10):4419–4462

    Article  CAS  Google Scholar 

  • Arya A, Sharma AL (2016) Conductivity and stability properties of solid polymer electrolyte based on PEO-PAN+LiPF6 for energy storage. Appl Sci Lett 2:72–75

    Google Scholar 

  • Arya A, Sharma AL (2017a) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540

    Article  CAS  Google Scholar 

  • Arya A, Sharma AL (2017b) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50(44):443002

    Article  CAS  Google Scholar 

  • Arya A, Sharma AL (2017c) Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics 24(8):2295–2319. https://doi.org/10.1007/s11581-017-2364-7

    Article  CAS  Google Scholar 

  • Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22(9):2725–2745

    Article  CAS  Google Scholar 

  • Baril D, Michot C, Armand M (1997) Electrochemistry of liquids vs. solids: polymer electrolytes. Solid State Ionics 94(1–4):35–47

    Article  CAS  Google Scholar 

  • Bhattacharya M (2016) Polymer nanocomposites – a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9(4):262

    Article  CAS  Google Scholar 

  • Brinker CJ, Hurd AJ (1994) Fundamentals of sol-gel dip-coating. J Phys III 4(7):1231–1242

    Google Scholar 

  • Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Marêché JF (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53(10):6209

    Article  CAS  Google Scholar 

  • Chen B, Evans JR, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A (2008) A critical appraisal of polymer–clay nanocomposites. Chem Soc Rev 37(3):568–594

    Article  Google Scholar 

  • Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473

    Article  CAS  Google Scholar 

  • Choudhary S, Sengwa RJ (2014) Intercalated clay structures and amorphous behavior of solution cast and melt pressed poly (ethylene oxide)–clay nanocomposites. J Appl Polym Sci 131(4). https://doi.org/10.1002/app.39898

    Google Scholar 

  • Dam T, Karan NK, Thomas R, Pradhan DK, Katiyar RS (2015) Observation of ionic transport and ion-coordinated segmental motions in composite (polymer-salt-clay) solid polymer electrolyte. Ionics 21(2):401–410

    Article  CAS  Google Scholar 

  • Deng D (2015) Li-ion batteries: basics, progress, and challenges. Energy Sci Eng 3(5):385–418

    Article  Google Scholar 

  • Dhatarwal P, Sengwa RJ, Choudhary S (2017) Effect of intercalated and exfoliated montmorillonite clay on the structural, dielectric and electrical properties of plasticized nanocomposite solid polymer electrolytes. Composit Commun 5:1–7

    Article  Google Scholar 

  • Do NST, Schaetzl DM, Dey B, Seabaugh AC, Fullerton-Shirey SK (2012) Influence of Fe2O3 nanofiller shape on the conductivity and thermal properties of solid polymer electrolytes: nanorods versus nanospheres. J Phys Chem C 116(40):21216–21223

    Article  CAS  Google Scholar 

  • Erceg M, Jozić D, Banovac I, Perinović S, Bernstorff S (2014) Preparation and characterization of melt intercalated poly (ethylene oxide)/lithium montmorillonite nanocomposites. Thermochim Acta 579:86–92

    Article  CAS  Google Scholar 

  • Fan L, Nan CW, Dang Z (2002) Effect of modified montmorillonites on the ionic conductivity of (PEO)16LiClO4 electrolytes. Electrochim Acta 47(21):3541–3544

    Article  CAS  Google Scholar 

  • Fu X, Yu D, Zhou J, Li S, Gao X, Han Y et al (2016) Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. Cryst Eng Commun 18(23):4236–4258

    Article  CAS  Google Scholar 

  • Gomari S, Esfandeh M, Ghasemi I (2017) All-solid-state flexible nanocomposite polymer electrolytes based on poly (ethylene oxide): lithium perchlorate using functionalized graphene. Solid State Ionics 303:37–46

    Article  CAS  Google Scholar 

  • Gondaliya N, Kanchan DK, Sharma P (2013) Effect of a plasticizer on a solid polymer electrolyte. Soc Plastics Eng Plastics Res. https://doi.org/10.2417/spepro.004646

  • Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  Google Scholar 

  • Hallinan DT Jr, Balsara NP (2013) Polymer electrolytes. Annu Rev Mater Res 43:503–525

    Article  CAS  Google Scholar 

  • https://about.bnef.com/blog/lithium-ion-battery-costs-squeezed-margins-new-business-models/

  • https://insideevs.com/volkswagens-transform-2025-plan-calls-for-automaker-to-be-1-for-evs/

  • https://www.greentechmedia.com/articles/read/tesla-fulfills-australia-battery-bet-whats-that-mean-industry

  • Karuppasamy K, Antony R, Alwin S, Balakumar S, Sahaya Shajan X (2015) A review on PEO based solid polymer electrolytes (SPEs) complexed with LiX (X= Tf, BOB) for rechargeable lithium ion batteries. Mater Sci Forum 807:41–63

    Article  Google Scholar 

  • Kim S, Park SJ (2007) Preparation and ion-conducting behaviors of poly (ethylene oxide)-composite electrolytes containing lithium montmorillonite. Solid State Ionics 178(13):973–979

    Article  CAS  Google Scholar 

  • Kim Y, Kwon SJ, Jang HK, Jung BM, Lee SB, Choi UH (2017) High ion conducting nanohybrid solid polymer electrolytes via single-ion conducting mesoporous organosilica in poly (ethylene oxide). Chem Mater 29(10):4401–4410

    Article  CAS  Google Scholar 

  • Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176

    Article  CAS  Google Scholar 

  • Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187

    Article  CAS  Google Scholar 

  • Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412

    Article  CAS  Google Scholar 

  • Kubišovß H, MěřÝnskß D, Svoboda P (2010) PP/clay nanocomposite: optimization of mixing conditions with respect to mechanical properties. Polym Bull 65(5):533–541

    Article  CAS  Google Scholar 

  • Kumar PP, Yashonath S (2006) Ionic conduction in the solid state. J Chem Sci 118(1):135–154

    Article  CAS  Google Scholar 

  • Kumar Y, Hashmi SA, Pandey GP (2011) Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics 201(1):73–80

    Article  CAS  Google Scholar 

  • Li W, Liu J, Zhao D (2016) Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 1:16023

    Article  CAS  Google Scholar 

  • Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al 2 O 3. Electrochim Acta 169:334–341

    Article  CAS  Google Scholar 

  • Lin D, Liu W, Liu Y, Lee HR, Hsu PC, Liu K, Cui Y (2015) The high ionic conductivity of composite solid polymer electrolyte via in situ syntheses of monodispersed SiO2 nanospheres in poly (ethylene oxide). Nano Lett 16(1):459–465

    Article  CAS  Google Scholar 

  • Lin X, Salari M, Arava LMR, Ajayan PM, Grinstaff MW (2016) High temperature electrical energy storage: advances, challenges, and frontiers. Chem Soc Rev 45(21):5848–5887

    Article  CAS  Google Scholar 

  • Lin Y, Wang X, Liu J, Miller JD (2017) Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 31:478–485

    Article  CAS  Google Scholar 

  • Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745

    Article  CAS  Google Scholar 

  • Liu W, Lin D, Sun J, Zhou G, Cui Y (2016) Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10(12):11407–11413

    Article  CAS  Google Scholar 

  • Liu W, Lee SW, Lin D, Shi F, Wang S, Sendek AD, Cui Y (2017) Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy 2:17035

    Article  CAS  Google Scholar 

  • Ma Y, Li LB, Gao GX, Yang XY, You Y (2016) Effect of montmorillonite on the ionic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidene difluoride/polyvinyl alcohol matrix for lithium ion batteries. Electrochim Acta 187:535–542

    Article  CAS  Google Scholar 

  • Miller TF III, Wang ZG, Coates GW, Balsara NP (2017) Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries. Acc Chem Res 50(3):590–593

    Article  CAS  Google Scholar 

  • Mohapatra SR, Thakur AK, Choudhary RNP (2009) Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage applications. J Power Sources 191(2):601–613

    Article  CAS  Google Scholar 

  • Moreno M, Quijada R, Santa Ana MA, Benavente E, Gomez-Romero P, González G (2011) Electrical and mechanical properties of poly (ethylene oxide)/intercalated clay polymer electrolyte. Electrochim Acta 58:112–118

    Article  CAS  Google Scholar 

  • Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279

    Article  CAS  Google Scholar 

  • Pal P, Ghosh A (2017) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167

    Article  CAS  Google Scholar 

  • Park CH, Kim DW, Prakash J, Sun YK (2003) Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics 159(1):111–119

    Article  CAS  Google Scholar 

  • Park CH, Park M, Yoo SI, Joo SK (2006) A spin-coated solid polymer electrolyte for all-solid-state rechargeable thin-film lithium polymer batteries. J Power Sources 158(2):1442–1446

    Article  CAS  Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  • Pinnavaia TJ, Beall GW (2000) Polymer-clay nanocomposites. Wiley, Chichester

    Google Scholar 

  • Polu AR, Rhee HW, Reddy MJK, Shanmugharaj AM, Ryu SH, Kim DK (2017) Effect of POSS-PEG hybrid nanoparticles on cycling performance of polyether-LiDFOB based solid polymer electrolytes for all solid-state Li-ion battery applications. J Ind Eng Chem 45:68–77

    Article  CAS  Google Scholar 

  • Sengwa RJ, Choudhary S (2014a) Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. J Appl Polym Sci 131(16). https://doi.org/10.1002/app.40617

    Article  CAS  Google Scholar 

  • Sengwa RJ, Choudhary S (2014b) Dielectric properties and fluctuating relaxation processes of poly (methyl methacrylate) based polymeric nanocomposite electrolytes. J Phys Chem Solids 75(6):765–774

    Article  CAS  Google Scholar 

  • Sengwa RJ, Choudhary S, Dhatarwal P (2015) Influences of ultrasonic-and microwave-irradiated preparation methods on the structural and dielectric properties of (PEO–PMMA)–LiCF3SO3–x wt% MMT nanocomposite electrolytes. Ionics 21(1):95–109

    Article  CAS  Google Scholar 

  • Sharma AL, Thakur AK (2010) Improvement in voltage, thermal, mechanical stability and ion transport properties in polymer-clay nanocomposites. J Appl Polym Sci 118(5):2743–2753

    Article  CAS  Google Scholar 

  • Sharma AL, Thakur AK (2011) Polymer matrix–clay interaction mediated mechanism of electrical transport in exfoliated and intercalated polymer nanocomposites. J Mater Sci 46(6):1916–1931

    Article  CAS  Google Scholar 

  • Sharma AL, Thakur AK (2013) Plastic separators with improved properties for portable power device applications. Ionics 19(5):795–809

    Article  CAS  Google Scholar 

  • Sharma AL, Shukla N, Thakur AK (2008) Studies on structure property relationship in a polymer–clay nanocomposite film based on (PAN)8LiClO4. J Polym Sci B Polym Phys 46(23):2577–2592

    Article  CAS  Google Scholar 

  • Sheng O, Jin C, Luo J, Yuan H, Huang H, Gan Y et al (2018) Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett 18(5):3104–3112. https://doi.org/10.1021/acs.nanolett.8b00659

    Article  CAS  Google Scholar 

  • Shodai T, Owens BB, Ohtsuka H, Yamaki JI (1994) Thermal stability of the polymer electrolyte (PEO)8LiCF3SO3. J Electrochem Soc 141(11):2978–2981

    Article  CAS  Google Scholar 

  • Shukla N, Thakur AK (2010) Ion transport model in exfoliated and intercalated polymer–clay nanocomposites. Solid State Ionics 181(19):921–932

    Article  CAS  Google Scholar 

  • Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197

    Article  CAS  Google Scholar 

  • Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42

    Article  CAS  Google Scholar 

  • Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47(16):5952–5964

    Article  CAS  Google Scholar 

  • Suthanthiraraj SA, Johnsi M (2017) Nanocomposite polymer electrolytes. Ionics 23:2531–2542

    Article  CAS  Google Scholar 

  • Tang C, Hackenberg K, Fu Q, Ajayan PM, Ardebili H (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 12(3):1152–1156

    Article  CAS  Google Scholar 

  • Tao X, Li X (2008) Catalyst-free synthesis, structural, and mechanical characterization of twinned Mg2B2O5 nanowires. Nano Lett 8(2):505–510

    Article  CAS  Google Scholar 

  • Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander BE (2014) Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide)(PEO) based solid polymer electrolytes. Solid State Ionics 266:25–28

    Article  CAS  Google Scholar 

  • Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z et al (2017) Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl Mater Interfaces 9(15):13694–13702

    Article  CAS  Google Scholar 

  • Wilson MS, Gottesfeld S (1992) Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 22(1):1–7

    Article  CAS  Google Scholar 

  • Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613

    Article  CAS  Google Scholar 

  • Zhang SS (2007a) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364

    Article  CAS  Google Scholar 

  • Zhang SS (2007b) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364

    Article  CAS  Google Scholar 

  • Zhang P, Yang LC, Li LL, Ding ML, Wu YP, Holze R (2011) Enhanced electrochemical and mechanical properties of P (VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires. J Membr Sci 379(1):80–85

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao Y, Gosselink D, Chen P (2015) Synthesis of poly (ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21(2):381–385

    Article  CAS  Google Scholar 

  • Zhang Q, Liu K, Ding F, Liu X (2016) Recent advances in solid polymer electrolytes for lithium batteries. Nano Res:1–36

    Google Scholar 

  • Zhao Y, Huang Z, Chen S, Chen B, Yang J, Zhang Q et al (2016) A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics 295:65–71

    Article  CAS  Google Scholar 

  • Zhu K, Liu Y, Liu J (2014) A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53 (Al)-LiTFSI thin film electrolyte. RSC Adv 4(80):42278–42284

    Article  CAS  Google Scholar 

  • Zu CX, Li H (2011) Thermodynamic analysis on energy densities of batteries. Energy Environ Sci 4(8):2614–2624

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the Central University of Punjab for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arya, A., Sharma, A.L. (2020). Polymer Nanocomposites: Synthesis and Characterization. In: Dasgupta, N., Ranjan, S., Lichtfouse, E. (eds) Environmental Nanotechnology Volume 4. Environmental Chemistry for a Sustainable World, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-26668-4_8

Download citation

Publish with us

Policies and ethics