Skip to main content

Functional Properties of Nanoporous Membranes for the Desalination of Water

  • Chapter
  • First Online:
Environmental Nanotechnology Volume 4

Abstract

Desalination provides a possibility of expanding the freshwater reserves by supplementing it with water from oceans and brackish reservoirs. Conventional desalination technologies like reverse osmosis and thermal distillation have failed to meet the expectancy due to high-energy consumption and low salt rejection. Recent research works prove that nanoporous desalination is efficient than conventional technologies due to its high mechanical–chemical stability and higher water flux. Experimental studies along molecular dynamic simulations justify that nanoporous membranes are capable of 100% salt rejection. In addition to nanomembranes, natural and synthetic nanofibers have also emerged as potential nanomaterials for desalination. This review provides a detailed insight on developments and augmentation techniques in the frontier of nanoporous desalination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ba C, Ladner DA, Economy J (2010) Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane. J Membr Sci 347(1):250–259

    Article  CAS  Google Scholar 

  • Bhowmick B, Mollick M, Masud R, Mondal D, Maity D, Bain MK, Bera NK, Rana D, Chattopadhyay S, Chakraborty M (2014) Poloxamer and gelatin gel guided polyaniline nanofibers: synthesis and characterization. Polym Int 63(8):1505–1512

    Article  CAS  Google Scholar 

  • Breck DW (1964) Crystalline zeolite Y. Google Patents

    Google Scholar 

  • Cai R, Liu Y, Gu S, Yan Y (2010) Ambient pressure dry-gel conversion method for zeolite MFI synthesis using ionic liquid and microwave heating. J Am Chem Soc 132(37):12776–12777

    Article  CAS  Google Scholar 

  • Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes–state of their development and perspective. Microporous Mesoporous Mater 38(1):3–24

    Article  CAS  Google Scholar 

  • Casado U, Aranguren M, Marcovich N (2014) Preparation and characterization of conductive nanostructured particles based on polyaniline and cellulose nanofibers. Ultrason Sonochem 21(5):1641–1648

    Article  CAS  Google Scholar 

  • Che A-F, Nie F-Q, Huang X-D, Xu Z-K, Yao K (2005) Acrylonitrile-based copolymer membranes containing reactive groups: surface modification by the immobilization of biomacromolecules. Polymer 46(24):11060–11065

    Article  CAS  Google Scholar 

  • Chua YT, Lin CXC, Kleitz F, Zhao XS, Smart S (2013) Nanoporous organosilica membrane for water desalination. Chem Commun 49(40):4534–4536

    Article  CAS  Google Scholar 

  • Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12(7):3602–3608

    Article  CAS  Google Scholar 

  • Cohen-Tanugi D, McGovern RK, Dave SH, Lienhard JH, Grossman JC (2014) Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ Sci 7(3):1134–1141

    Article  CAS  Google Scholar 

  • Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112(5):1427–1434

    Article  CAS  Google Scholar 

  • Corry B (2011) Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ Sci 4(3):751–759

    Article  CAS  Google Scholar 

  • Covarrubias C, Garcia R, Arriagada R, Yanez J, Ramanan H, Lai Z, Tsapatsis M (2008) Removal of trivalent chromium contaminant from aqueous media using FAU-type zeolite membranes. J Membr Sci 312(1):163–173

    Article  CAS  Google Scholar 

  • Dai QW, Xu ZK, Wu J (2004) A novel approach for the surface modification of polymeric membrane with phospholipid polymer. Chin Chem Lett 15(8):993–996

    CAS  Google Scholar 

  • Dai Z-W, Wan L-S, Xu Z-K (2008) Surface glycosylation of polyacrylonitrile ultrafiltration membrane to improve its anti-fouling performance. J Membr Sci 325(1):479–485

    Article  CAS  Google Scholar 

  • Davis ME (1991) Zeolites and molecular sieves: not just ordinary catalysts. Ind Eng Chem Res 30(8):1675–1683

    Article  CAS  Google Scholar 

  • Deng Y, Cai Y, Sun Z, Gu D, Wei J, Li W, Guo X, Yang J, Zhao D (2010) Controlled synthesis and functionalization of ordered large-pore mesoporous carbons. Adv Funct Mater 20(21):3658–3665

    Article  CAS  Google Scholar 

  • El-Deen AG, Barakat NA, Khalil KA, Kim HY (2014) Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process. New J Chem 38(1):198–205

    Article  CAS  Google Scholar 

  • Geus ER, Den Exter MJ, van Bekkum H (1992) Synthesis and characterization of zeolite (MFI) membranes on porous ceramic supports. J Chem Soc Faraday Trans 88(20):3101–3109

    Article  CAS  Google Scholar 

  • Goh PS, Ismail AF, Ng BC (2013) Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308:2–14

    Article  CAS  Google Scholar 

  • Huang Z-M, Zhang Y, Ramakrishna S, Lim C (2004) Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45(15):5361–5368

    Article  CAS  Google Scholar 

  • Huang L, Zhang M, Li C, Shi G (2015) Graphene-based membranes for molecular separation. J Phys Chem Lett 6(14):2806–2815

    Article  CAS  Google Scholar 

  • Jiang G, Qin X (2014) An improved free surface electrospinning for high throughput manufacturing of core–shell nanofibers. Mater Lett 128:259–262

    Article  CAS  Google Scholar 

  • Jiang D-e, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024

    Article  CAS  Google Scholar 

  • Kazemimoghadam M (2010) New nanopore zeolite membranes for water treatment. Desalination 251(1):176–180

    Article  CAS  Google Scholar 

  • Kazemimoghadam M, Mohammadi T (2007) Synthesis of MFI zeolite membranes for water desalination. Desalination 206(1):547–553

    Article  CAS  Google Scholar 

  • Killingsworth B (2012) Water desalination across nanoporous graphene

    Google Scholar 

  • Konatham D, Yu J, Ho TA, Striolo A (2013) Simulation insights for graphene-based water desalination membranes. Langmuir 29(38):11884–11897

    Article  CAS  Google Scholar 

  • Lee J, Karnik R (2010) Desalination of water by vapor-phase transport through hydrophobic nanopores. J Appl Phys 108(4):044315

    Article  CAS  Google Scholar 

  • Li Y, Yang W (2008) Microwave synthesis of zeolite membranes: a review. J Membr Sci 316(1):3–17

    Article  CAS  Google Scholar 

  • Li L, Dong J, Nenoff TM, Lee R (2004) Desalination by reverse osmosis using MFI zeolite membranes. J Membr Sci 243(1):401–404

    Article  CAS  Google Scholar 

  • Liao Y, Yu D-G, Wang X, Chain W, Li X-G, Hoek EM, Kaner RB (2013) Carbon nanotube-templated polyaniline nanofibers: synthesis, flash welding and ultrafiltration membranes. Nanoscale 5(9):3856–3862

    Article  CAS  Google Scholar 

  • Liebes Y, Hadad B, Ashkenasy N (2011) Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching. Nanotechnology 22(28):285303

    Article  CAS  Google Scholar 

  • Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17

    Article  CAS  Google Scholar 

  • Liu Y, Chen X (2013) High permeability and salt rejection reverse osmosis by a zeolite nano-membrane. Phys Chem Chem Phys 15(18):6817–6824

    Article  CAS  Google Scholar 

  • Liu Z-M, Xu Z-K, Wang J-Q, Wu J, Fu J-J (2004) Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. Eur Polym J 40(9):2077–2087. https://doi.org/10.1016/j.eurpolymj.2004.05.020

    Article  CAS  Google Scholar 

  • Mahmoud KA, Mansoor B, Mansour A, Khraisheh M (2015) Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356:208–225

    Article  CAS  Google Scholar 

  • McGovern RK, Weiner AM, Sun L, Chambers CG, Zubair SM (2014) On the cost of electrodialysis for the desalination of high salinity feeds. Appl Energy 136:649–661

    Article  Google Scholar 

  • Mishra AK, Ramaprabhu S (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282:39–45

    Article  CAS  Google Scholar 

  • Mohammadi T, Kaviani A (2003) Water shortage and seawater desalination by electrodialysis. Desalination 158(1):267–270

    Article  CAS  Google Scholar 

  • MĂĽller M, Oehr C (1999) Plasma aminofunctionalisation of PVDF microfiltration membranes: comparison of the in plasma modifications with a grafting method using ESCA and an amino-selective fluorescent probe. Surf Coat Technol 116–119:802–807. https://doi.org/10.1016/S0257-8972(99)00268-6

    Article  Google Scholar 

  • Mulvenna RA, Weidman JL, Jing B, Pople JA, Zhu Y, Boudouris BW, Phillip WA (2014) Tunable nanoporous membranes with chemically-tailored pore walls from triblock polymer templates. J Membr Sci 470:246–256. https://doi.org/10.1016/j.memsci.2014.07.021

    Article  CAS  Google Scholar 

  • Naik SP, Chiang AS, Thompson R (2003) Synthesis of zeolitic mesoporous materials by dry gel conversion under controlled humidity. J Phys Chem B 107(29):7006–7014

    Article  CAS  Google Scholar 

  • NicolaĂŻ A, Sumpter BG, Meunier V (2014) Tunable water desalination across graphene oxide framework membranes. Phys Chem Chem Phys 16(18):8646–8654

    Article  CAS  Google Scholar 

  • O’Hern SC, Stewart CA, Boutilier MS, Idrobo J-C, Bhaviripudi S, Das SK, Kong J, Laoui T, Atieh M, Karnik R (2012) Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6(11):10130–10138

    Article  CAS  Google Scholar 

  • O’Hern SC, Boutilier MS, Idrobo J-C, Song Y, Kong J, Laoui T, Atieh M, Karnik R (2014) Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett 14(3):1234–1241

    Article  CAS  Google Scholar 

  • O’Hern SC, Jang D, Bose S, Idrobo J-C, Song Y, Laoui T, Kong J, Karnik R (2015) Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett 15(5):3254–3260

    Article  CAS  Google Scholar 

  • Olson DA, Chen L, Hillmyer MA (2007) Templating nanoporous polymers with ordered block copolymers†. Chem Mater 20(3):869–890

    Article  CAS  Google Scholar 

  • Ophir A, Lokiec F (2005) Advanced MED process for most economical sea water desalination. Desalination 182(1):187–198

    Article  CAS  Google Scholar 

  • Othmer DF (1966) Evaporation for desalination—scale prevention and removal. Desalination 1(2):194–198

    Article  CAS  Google Scholar 

  • Pan Z, Donthu SK, Wu N, Li S, Dravid VP (2006) Directed fabrication of radially stacked multifunctional oxide heterostructures using soft electron-beam lithography. Small 2(2):274–280

    Article  CAS  Google Scholar 

  • Rowsell JL, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128(4):1304–1315

    Article  CAS  Google Scholar 

  • Sadhukhan H, Ramani M, Misra B, Verma R, Hanra M (1994) Role of evaporative and membrane desalination technology in solving drinking water problems in India. Desalination 96(1):249–258

    Article  CAS  Google Scholar 

  • Sadrzadeh M, Mohammadi T (2008) Sea water desalination using electrodialysis. Desalination 221(1):440–447

    Article  CAS  Google Scholar 

  • Santos L, Santilli CV, Larbot A, Persin M, Pulcinelli SH (2000) Nanopore size growth and ultrafiltration performance of SnO2 ceramic membranes prepared by sol-gel route. J Sol-Gel Sci Technol 19(1–3):621–625

    Article  CAS  Google Scholar 

  • Sint K, Wang B, Král P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130(49):16448–16449

    Article  CAS  Google Scholar 

  • Sklenak S, DÄ›deÄŤek J, Li C, Wichterlová B, Gábová V, Sierka M, Sauer J (2007) Aluminum siting in silicon-rich zeolite frameworks: a combined high-resolution 27Al NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5. Angew Chem Int Ed 46(38):7286–7289

    Article  CAS  Google Scholar 

  • Surwade SP, Smirnov SN, Vlassiouk IV, Unocic RR, Veith GM, Dai S, Mahurin SM (2015) Water desalination using nanoporous single-layer graphene. Nat Nanotechnol 10(5):459–464

    Article  CAS  Google Scholar 

  • Tijing LD, Woo YC, Shim W-G, He T, Choi J-S, Kim S-H, Shon HK (2016) Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. J Membr Sci 502:158–170

    Article  CAS  Google Scholar 

  • Tofighy MA, Mohammadi T (2010) Salty water desalination using carbon nanotube sheets. Desalination 258(1):182–186

    Article  CAS  Google Scholar 

  • Ulbricht M, Belfort G (1996) Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone. J Membr Sci 111(2):193–215

    Article  CAS  Google Scholar 

  • Van der Bruggen B, Vandecasteele C (2002) Distillation vs. membrane filtration: overview of process evolutions in seawater desalination. Desalination 143(3):207–218

    Article  Google Scholar 

  • Wang EN, Karnik R (2012) Water desalination: graphene cleans up water. Nat Nanotechnol 7(9):552–554

    Article  CAS  Google Scholar 

  • Wilf M, Bartels C (2005) Optimization of seawater RO systems design. Desalination 173(1):1–12

    Article  CAS  Google Scholar 

  • Xu Z-K, Dai Q-W, Wu J, Huang X-J, Yang Q (2004) Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: a novel approach. Langmuir 20(4):1481–1488

    Article  CAS  Google Scholar 

  • Xu Z-K, Huang X-J, Wan L-S (2009) Surface engineering of polymer membranes. Springer, Berlin

    Book  Google Scholar 

  • Xue M, Qiu H, Guo W (2013) Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Nanotechnology 24(50):505720

    Article  CAS  Google Scholar 

  • Yang Q, Tian J, Hu M-X, Xu Z-K (2007) Construction of a comb-like glycosylated membrane surface by a combination of UV-induced graft polymerization and surface-initiated ATRP. Langmuir 23(12):6684–6690

    Article  CAS  Google Scholar 

  • Yang SY, Park J, Yoon J, Ree M, Jang SK, Kim JK (2008) Virus filtration membranes prepared from nanoporous block copolymers with good dimensional stability under high pressures and excellent solvent resistance. Adv Funct Mater 18(9):1371–1377

    Article  CAS  Google Scholar 

  • Yang H-L, Chun-Te Lin J, Huang C (2009) Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res 43(15):3777–3786

    Article  CAS  Google Scholar 

  • Yang J, Zhai Y, Deng Y, Gu D, Li Q, Wu Q, Huang Y, Tu B, Zhao D (2010) Direct triblock-copolymer-templating synthesis of ordered nitrogen-containing mesoporous polymers. J Colloid Interface Sci 342(2):579–585

    Article  CAS  Google Scholar 

  • Yemini M, Hadad B, Liebes Y, Goldner A, Ashkenasy N (2009) The controlled fabrication of nanopores by focused electron-beam-induced etching. Nanotechnology 20(24):245302

    Article  CAS  Google Scholar 

  • Yu S, Li N, Wharton J, Martin CR (2003) Nano wheat fields prepared by plasma-etching gold nanowire-containing membranes. Nano Lett 3(6):815–818

    Article  CAS  Google Scholar 

  • Yu H-Y, Xu Z-K, Xie Y-J, Liu Z-M, Wang S-Y (2006) Flux enhancement for polypropylene microporous membrane in a SMBR by the immobilization of poly (N-vinyl-2-pyrrolidone) on the membrane surface. J Membr Sci 279(1):148–155

    Article  CAS  Google Scholar 

  • Zhang Q, Gupta S, Emrick T, Russell TP (2006) Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. J Am Chem Soc 128(12):3898–3899

    Article  CAS  Google Scholar 

  • Zhao S, Xue J, Kang W (2013) Ion selection of charge-modified large nanopores in a graphene sheet. J Chem Phys 139(11):114702

    Article  CAS  Google Scholar 

  • Zhu B, Kim JH, Na Y-H, Moon I-S, Connor G, Maeda S, Morris G, Gray S, Duke M (2013a) Temperature and pressure effects of desalination using a MFI-type zeolite membrane. Membranes 3(3):155–168

    Article  CAS  Google Scholar 

  • Zhu B, Li B, Zou L, Hill AJ, Zhao D, Lin JY, Duke M (2013b) Functional zeolitic framework membranes for water treatment and desalination. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Zhu C, Li H, Zeng XC, Meng S (2013c) Ideal desalination through Graphyne-4 membrane: Nanopores for quantized water transport. arXiv preprint arXiv:13070208

    Google Scholar 

  • Zhu B, Hong Z, Milne N, Doherty CM, Zou L, Lin Y, Hill AJ, Gu X, Duke M (2014) Desalination of seawater ion complexes by MFI-type zeolite membranes: temperature and long term stability. J Membr Sci 453:126–135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Anant Achary, Department of Biotechnology, Kamaraj College of Engineering and Technology, India, for his motivation and support for this contribution to the scientific community.

No Conflict Exists

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganesan, J., Gandhi, M.P., Nagendran, M., Li, B., Nair, V., Velayudhaperumal Chellam, P. (2020). Functional Properties of Nanoporous Membranes for the Desalination of Water. In: Dasgupta, N., Ranjan, S., Lichtfouse, E. (eds) Environmental Nanotechnology Volume 4. Environmental Chemistry for a Sustainable World, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-26668-4_4

Download citation

Publish with us

Policies and ethics