Skip to main content

Ventilatory Modes: Pressure Support Ventilation and Other Ventilatory Options

  • Chapter
  • First Online:
Book cover Ventilatory Support and Oxygen Therapy in Elder, Palliative and End-of-Life Care Patients

Abstract

Pressure support ventilation is a pressure-targeted, flow-cycled, mode of ventilation in which each breath must be patient-triggered (Fig. 22.1). Thus, respiratory rate is determined by the patient; the ventilator is able to sense patient’s respiratory effort which is immediately supported by a pressure set by the operator [1]. The time of pressurization can be determined and it is defined Rise Time. At the beginning of inspiration, the difference of pressure between the ventilator and the lung is highest so the inspiratory flow reaches its peak; as the air is pushed in the alveoli, the pressure of respiratory system of patient increases and the difference of pressure between the ventilator and the patient decreases so the flow starts to linearly decline. The pressure support stops when the inspiratory flow decreases under a value (called expiratory trigger) set by the operator, so the inspiratory time is variable and flow dependent. Expiratory trigger can be an absolute value (typically ranging from 2 to 6 L/min) or a percentage of the inspiratory peak flow; some ventilators fix a limit for inspiratory duration to prevent the prolongation of inspiration in case of circuit leakage. Expiration is determined by the withdrawal of pressure support so it is totally passive; a PEEP (positive end-expiratory pressure) can be set to avoid atelectasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brochard L, Lellouche F. Pressure support ventilation. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. 2nd ed. New York: McGraw-Hill; 2006. p. 221–50.

    Google Scholar 

  2. Aslanian P, El Atrous S, Isabey D, Valente E, Corsi D, Harf A, Lemaire F, Brochard L. Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med. 1998;157(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  3. Beydon L, Chasse M, Harf A, Lemaire F. Inspiratory work of breathing during spontaneous ventilation using demand valves and continuous flow systems. Am Rev Respir Dis. 1988;138(2):300–4.

    Article  CAS  PubMed  Google Scholar 

  4. Samodelov LF, Falke KJ. Total inspiratory work with modern demand valve devices compared to continuous flow CPAP. Intensive Care Med. 1988;14(6):632–9.

    Article  CAS  PubMed  Google Scholar 

  5. Cox D, Tinloi SF, Farrimond JG. Investigation of the spontaneous modes of breathing of different ventilators. Intensive Care Med. 1988;14(5):532–7.

    Article  CAS  PubMed  Google Scholar 

  6. Stell IM, Paul G, Lee KC, Ponte J, Moxham J. Noninvasive ventilator triggering in chronic obstructive pulmonary disease. A test lung comparison. Am J Respir Crit Care Med. 2001;164(11):2092–7.

    Article  CAS  PubMed  Google Scholar 

  7. Brochard L, Harf A, Lorino H, Lemaire F. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis. 1989;139(2):513–21.

    Article  CAS  PubMed  Google Scholar 

  8. Tokioka H, Saito S, Kosaka F. Effect of pressure support ventilation on breathing patterns and respiratory work. Intensive Care Med. 1989;15(8):491–4.

    Article  CAS  PubMed  Google Scholar 

  9. Chiumello D, Pelosi P, Taccone P, Slutsky A, Gattinoni L. Effect of different inspiratory rise time and cycling off criteria during pressure support ventilation in patients recovering from acute lung injury. Crit Care Med. 2003;31(11):2604–10.

    Article  PubMed  Google Scholar 

  10. MacIntyre NR, Ho LI. Effects of initial flow rate and breath termination criteria on pressure support ventilation. Chest. 1991;99(1):134–8.

    Article  CAS  PubMed  Google Scholar 

  11. Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172(10):1283–9. Epub 2005 Aug 18.

    Article  PubMed  Google Scholar 

  12. Tokioka H, Tanaka T, Ishizu T, Fukushima T, Iwaki T, Nakamura Y, Kosogabe Y. The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation. Anesth Analg. 2001;92(1):161–5.

    Article  CAS  PubMed  Google Scholar 

  13. Tobin MJ, Jubran A, Laghi F. Patient-ventilator interaction. Am J Respir Crit Care Med. 2001;163(5):1059–63.

    Article  CAS  PubMed  Google Scholar 

  14. Sassoon CS, Foster GT. Patient-ventilator asynchrony. Curr Opin Crit Care. 2001;7(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  15. Tassaux D, Michotte JB, Gainnier M, Gratadour P, Fonseca S, Jolliet P. Expiratory trigger setting in pressure support ventilation: from mathematical model to bedside. Crit Care Med. 2004;32(9):1844–50.

    Article  PubMed  Google Scholar 

  16. Sassoon CS. Ventilator-associated diaphragmatic dysfunction. Am J Respir Crit Care Med. 2002;166(8):1017–8.

    Article  PubMed  Google Scholar 

  17. Sassoon CS, Zhu E, Caiozzo VJ. Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med. 2004;170(6):626–32. Epub 2004 Jun 16.

    Article  PubMed  Google Scholar 

  18. Esteban A, Anzueto A, Frutos F, Alía I, Brochard L, Stewart TE, Benito S, Epstein SK, Apezteguía C, Nightingale P, Arroliga AC, Tobin MJ, Mechanical Ventilation International Study Group. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287(3):345–55.

    Article  PubMed  Google Scholar 

  19. Ezingeard E, Diconne E, Guyomarc’h S, Venet C, Page D, Gery P, Vermesch R, Bertrand M, Pingat J, Tardy B, Bertrand JC, Zeni F. Weaning from mechanical ventilation with pressure support in patients failing a T-tube trial of spontaneous breathing. Intensive Care Med. 2006;32(1):165–9. Epub 2005 Nov 10.

    Article  PubMed  Google Scholar 

  20. Carlucci A, Richard JC, Wysocki M, Lepage E, Brochard L, SRLF Collaborative Group on Mechanical Ventilation. Noninvasive versus conventional mechanical ventilation. An epidemiologic survey. Am J Respir Crit Care Med. 2001;163(4):874–80.

    Article  CAS  PubMed  Google Scholar 

  21. Stock MC, Downs JB, Frolicher DA. Airway pressure release ventilation. Crit Care Med. 1987;15(5):462–6.

    Article  CAS  PubMed  Google Scholar 

  22. Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1241–8.

    Article  CAS  PubMed  Google Scholar 

  23. Putensen C, Räsänen J, López FA. Ventilation-perfusion distributions during mechanical ventilation with superimposed spontaneous breathing in canine lung injury. Am J Respir Crit Care Med. 1994;150(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  24. Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005;33(3 Suppl):S228–40.

    Article  PubMed  Google Scholar 

  25. Kaplan LJ, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care. 2001;5(4):221–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Putensen C, Zech C, Wrigge H, Zinserling J, Stüber F, Von Spiegel T, et al. Long term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164:43–9.

    Article  CAS  PubMed  Google Scholar 

  27. Hering R, Zinserling J, Wrigge H, Varelmann D, Berg A, Kreyer S, et al. Effects of spontaneous breathing during airway pressure release ventilation on respiratory work and muscle blood flow in experimental lung injury. Chest. 2005;128:2991–8.

    Article  PubMed  Google Scholar 

  28. Hering R, Veihofer A, Zinserling J, Wrigge H, Kreyer S, Berg A, et al. Effects of spontaneous breathing during airway pressure release ventilation on intestinal blood flow in experimental lung injury. Anesthesiology. 2003;99:1137–44.

    Article  PubMed  Google Scholar 

  29. Putensen C, Muders T. Should we breathe quiet or noisy? Crit Care. 2014;18(2):116. https://doi.org/10.1186/cc13762.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kiss T, Koch T, Gama de Abreu M. Potential clinical applications of variable ventilation. Netherlands J Crit Care. 2012;16(3):79–83.

    Google Scholar 

  31. Carvalho AR, Spieth PM, Güldner A, Cuevas M, Carvalho NC, Beda A, Spieth S, Stroczynski C, Wiedemann B, Koch T, Pelosi P, de Abreu MG. Distribution of regional lung aeration and perfusion during conventional and noisy pressure support ventilation in experimental lung injury. J Appl Physiol (1985). 2011;110(4):1083–92. https://doi.org/10.1152/japplphysiol.00804.2010. Epub 2011 Jan 26.

    Article  Google Scholar 

  32. Arold SP, Suki B, Alencar AM, Lutchen KR, Ingenito EP. Variable ventilation induces endogenous surfactant release in normal Guinea pigs. Am J Physiol Lung Cell Mol Physiol. 2003;285(2):L370–5.

    Article  CAS  PubMed  Google Scholar 

  33. Ma B, Suki B, Bates JH. Effects of recruitment/derecruitment dynamics on the efficacy of variable ventilation. J Appl Physiol (1985). 2011;110(5):1319–26. https://doi.org/10.1152/japplphysiol.01364.2010. Epub 2011 Mar 3.

    Article  Google Scholar 

  34. Lefevre GR, Kowalski SE, Girling LG, Thiessen DB, Mutch WA. Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med. 1996;154(5):1567–72.

    Article  CAS  PubMed  Google Scholar 

  35. Gama de Abreu M, Spieth PM, Pelosi P, Carvalho AR, Walter C, Schreiber-Ferstl A, Aikele P, Neykova B, Hübler M, Koch T. Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med. 2008;36(3):818–27. https://doi.org/10.1097/01.CCM.0000299736.55039.3A.

    Article  PubMed  Google Scholar 

  36. Baum M, Benzer H, Putensen C, Koller W, Putz G. Biphasic positive airway pressure (BIPAP)—a new form of augmented ventilation. Anaesthesist. 1989;38(9):452–8.

    CAS  PubMed  Google Scholar 

  37. Downs JB, Stock MC. Airway pressure release ventilation: a new concept in ventilatory support. Crit Care Med. 1987;15(5):459–61.

    Article  CAS  PubMed  Google Scholar 

  38. Tobin MJ, Laghi F, Jubran A. Respiratory muscle dysfunction in mechanically-ventilated patients. Mol Cell Biochem. 1998;179(1–2):87–98.

    Article  CAS  PubMed  Google Scholar 

  39. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515–22. Epub 2006 Aug 1.

    Article  PubMed  Google Scholar 

  40. Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest. 1997;112(6):1592–9.

    Article  CAS  PubMed  Google Scholar 

  41. Younes M. Proportional-assist ventilation. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. 2nd ed. New York: McGraw-Hill; 2006. p. 335–64.

    Google Scholar 

  42. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindström L. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5(12):1433–6.

    Article  CAS  PubMed  Google Scholar 

  43. Lourenço RV, Cherniack NS, Malm JR, Fishman AP. Nervous output from the respiratory center during obstructed breathing. J Appl Physiol. 1966;21(2):527–33.

    Article  PubMed  Google Scholar 

  44. Navalesi P, Costa R. New modes of mechanical ventilation: proportional assist ventilation, neurally adjusted ventilatory assist, and fractal ventilation. Curr Opin Crit Care. 2003;9(1):51–8.

    Article  PubMed  Google Scholar 

  45. Brander L, Moerer O, Hedenstierna G, Beck J, Takala J, Slutsky AS, Sinderby C. Neural control of ventilation prevents both over-distension and de-recruitment of experimentally injured lungs. Respir Physiol Neurobiol. 2017;237:57–67. https://doi.org/10.1016/j.resp.2016.12.010. Epub 2016 Dec 22.

    Article  PubMed  Google Scholar 

  46. Schmidt M, Demoule A, Cracco C, Gharbi A, Fiamma MN, Straus C, Duguet A, Gottfried SB, Similowski T. Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure. Anesthesiology. 2010;112(3):670–81. https://doi.org/10.1097/ALN.0b013e3181cea375.

    Article  PubMed  Google Scholar 

  47. Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis. 1992;145(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  48. Beck J, Campoccia F, Allo JC, Brander L, Brunet F, Slutsky AS, Sinderby C. Improved synchrony and respiratory unloading by neurally adjusted ventilatory assist (NAVA) in lung-injured rabbits. Pediatr Res. 2007;61(3):289–94.

    Article  PubMed  Google Scholar 

  49. Costa R, Spinazzola G, Cipriani F, Ferrone G, Festa O, Arcangeli A, Antonelli M, Proietti R, Conti G. A physiologic comparison of proportional assist ventilation with load-adjustable gain factors (PAV+) versus pressure support ventilation (PSV). Intensive Care Med. 2011;37(9):1494–500. https://doi.org/10.1007/s00134-011-2297-y. Epub 2011 Jul 1.

    Article  CAS  PubMed  Google Scholar 

  50. Grasso S, Puntillo F, Mascia L, Ancona G, Fiore T, Bruno F, Slutsky AS, Ranieri VM. Compensation for increase in respiratory workload during mechanical ventilation. Pressure-support versus proportional-assist ventilation. Am J Respir Crit Care Med. 2000;161(3 Pt 1):819–26.

    Article  CAS  PubMed  Google Scholar 

  51. Ranieri VM, Giuliani R, Mascia L, Grasso S, Petruzzelli V, Puntillo N, Perchiazzi G, Fiore T, Brienza A. Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol (1985). 1996;81(1):426–36.

    Article  CAS  Google Scholar 

  52. Grasso S, Ranieri VM. Proportional assist ventilation. Respir Care Clin N Am. 2001;7(3):465–73, ix–x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buonanno, P., Vargas, M., Servillo, G. (2020). Ventilatory Modes: Pressure Support Ventilation and Other Ventilatory Options. In: Esquinas, A., Vargas, N. (eds) Ventilatory Support and Oxygen Therapy in Elder, Palliative and End-of-Life Care Patients . Springer, Cham. https://doi.org/10.1007/978-3-030-26664-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26664-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26663-9

  • Online ISBN: 978-3-030-26664-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics