Skip to main content

Rhizosphere: A Home for Human Pathogens

  • Chapter
  • First Online:
Plant Biotic Interactions

Abstract

Rhizosphere is the zone where the microbe-mediated processes are influenced by root exudates. Owing to its high nutrient content due to root exudates, and ability to provide a safe home, it acts as a natural reservoir to not only beneficial bacteria but also to those which can be potential threat for humans, and hence acts as a ‘microbial hot spot’. There has been an increase in incidences of human infections by opportunistic human pathogens residing in the rhizosphere. Many bacterial species are known to have dual interactions with both plants and humans. These bacterial species share similar colonization mechanisms for the rhizosphere and human organs. Other phenomena of common occurrence in rhizosphere are the higher rate of horizontal gene transfer, enhanced competition, and presence of various antibiotics resulting in greater level of natural resistances. The present chapter highlights the prevalence and concern of human pathogens residing in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. J Appl Microbiol Biotechnol 84:8–11

    Article  CAS  Google Scholar 

  • Berg G, Knaape C, Ballin G, Seidel D (1994) Biological control of Verticillium dahliae KLEB by naturally occurring rhizosphere bacteria. Arch Phytopathol Dis Protect 29:249–262

    Article  Google Scholar 

  • Berg G, Marten P, Ballin G (1996) Stenotrophomonas maltophilia in the rhizosphere of oilseed rape – occurrence, characterization and interaction with phytopathogenic fungi. Microbiol Res 151:19–27

    Article  CAS  Google Scholar 

  • Berg G, Roskot N, Smalla K (1999) Genotypic and phenotypic relationship in clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 37:3594–3600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 71:4203–4213

    Article  CAS  Google Scholar 

  • Berg G, Zachow C, Cardinale M, Műller H (2010) Ecology and human pathogenicity of plant-associated bacteria. In: Ehlers RU (ed) Regulation of biological control agents. Springer, Berlin, pp 175–189

    Google Scholar 

  • Bernier SP, Silo-Suh L, Woods DE, Ohman DE, Sokol PA (2003) Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect Immun 71:5306–5313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binks PR, Nicklin S, Bruce NC (1995) Degradation of RDX by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1813–1322

    Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional anö structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233

    Article  CAS  Google Scholar 

  • Bulgarelli D et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Baldini RL, Rahme LG (2001) Common mechanisms for pathogens of plants and animals. Annu Rev Phytopathol 39:259–284

    Article  CAS  PubMed  Google Scholar 

  • Chelius MK, Triplett EW (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheuk W, Woo PCY, Yuen KY, Yu PH, Chan JKC (2000) Intestinal inflammatory pseudotumour with regional lymph node involvement: identification of a new bacterium as the etiological agent. J Pathol 192:289–292

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    Article  CAS  PubMed  Google Scholar 

  • Cook RJ, Tomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci U S A 92:4197–4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooley MB, Miller WG, Mandrell RE (2003) Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl Environ Microbiol 69:4915–4926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho TH, Venter SN (2009) Pathogen profile. Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol 10:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Critzer FJ, Doyle MP (2010) Microbial ecology of foodborne pathogens associated with produce. Curr Opin Biotechnol 21:125–130

    Article  CAS  PubMed  Google Scholar 

  • Cruz AT, Andreea C, Allen CH (2007) Pantonea agglomerans, a plant pathogen causing human disease. J Clin Microbiol 45:1989–1992

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalmastri C, Chiarini L, Cantale C, Bevivino A, Tabacchioni S (1999) Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populations. Microb Ecol 38:273–284

    Article  CAS  PubMed  Google Scholar 

  • De Souza JT, De Boer M, De Waard P, Van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmotte N et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. P Natl Acad Sci USA 106:16428–16433

    Article  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Denton M, Kerr KG (1998) Microbiological and clinical aspects of infections associated with Stenotrophomonas maltophilia. Clin Microbiol Rev 11:7–80

    Article  Google Scholar 

  • Dörr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant–microbe and fungus–microbe interactions. Mol Microbiol 30:7–17

    Article  PubMed  Google Scholar 

  • Dowe MJ, Jackson ED, Mori JG, Bell CR (1997) Listeria monocytogenes survival in soil and incidence in agricultural soils. J Food Prot 60:1201–1207

    Article  PubMed  Google Scholar 

  • Eberl L, Vandamme P (2016) Members of the genus Burkholderia: good and bad guys. F1000 Res 5: 1–10

    Google Scholar 

  • Eckburg PB, Relman DA (2007) The role of microbes in Crohn’s disease. Clin Infect Dis 44:256–262

    Article  CAS  PubMed  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33:410–415

    Article  Google Scholar 

  • Goris J, Boon N, Lebbe L, Verstraete W, De Vos P (2003) Diversity of activated sludge bacteria receiving the 3-chloroaniline degradative plasmid pC1gfp. FEMS Microbiol Ecol 46:221–230

    Article  CAS  PubMed  Google Scholar 

  • Govan JRW, Hughes JE, Vandamme P (1996) Burkholderia cepacia: medical, taxonomic and ecological issues. J Med Microbiol 45:395–407

    Article  CAS  PubMed  Google Scholar 

  • Govan JRW, Balendreau J, Vandamme P (2000) Burkholderia cepacia – friend and foe. ASM News 66:124–125

    Google Scholar 

  • Graner G, Persson P, Meijer J, Alstrøm S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 29:269–276

    Article  CAS  Google Scholar 

  • Gupta CP, Sharma A, Dubey RC, Maheshwari DK (2001) Effect of metal ions on growth of Pseudomonas aeruginosa and siderophore and protein production. Indian J Exp Biol 39:1318–1321

    CAS  PubMed  Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacker J, Hentschel U, Dobrindt U (2003) Prokaryotic chromosomes and diseases. Science 301:790–793

    Article  CAS  PubMed  Google Scholar 

  • Hadley WM et al (1987) Five month oral (diet) toxicity/infectivity study of Bacillus thuringiensis insecticides in sheep. Fundam Appl Toxicol 8:236–242

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Gantner S, Schuhegger R, Steidle A, Dürr C, Schmid M et al (2004) N-acyl homoserine lactones of rhizosphere bacteria trigger systemic resistance in tomato plants. In: Lugtenberg B, Tikhonovich I, Provorov N (eds) Biology of molecular plant–microbe interactions, vol 4. MPMI, St Paul, MN, pp 554–556

    Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hauben L, Vauterin L, Moore ERB, Hoste M, Swings J (1999) Genomic diversity of the genus Stenotrophomonas. Int J Syst Bacteriol 49:1749–1760

    Article  CAS  PubMed  Google Scholar 

  • Hebbar KP, Martel MH, Heulin T (1998) Suppression of pre- and postemergence damping-off in corn by Burkholderia cepacia. Europ J Plant Pathol 104:29–36

    Article  Google Scholar 

  • Hinsinger P, Marschner P (2006) Rhizosphere – perspectives and challenges – a tribute to Lorenz Hiltner. Plant Soil 283:vii–viii

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Holden N, Pritchard L, Toth I (2009) Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol Rev 33:689–703

    Article  CAS  PubMed  Google Scholar 

  • Holmes A, Govan J, Goldstein R (1998) Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg Infect Dis 4:221–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikemoto S, Suzuki K, Kaneko T, Komagata K (1980) Characterization of strains of Pseudomonas maltophilia which do not require methionine. Int J Syst Bacteriol 30:437–447

    Article  CAS  Google Scholar 

  • Jelveh N, Cunha BA (1999) Ochrobactrum anthropic bacteremia. Heart Lung 28:145–146

    Article  CAS  PubMed  Google Scholar 

  • Jensen GB, Hansen MB, Eilenberg J, Maillon J (2003) The hidden lifestyle of Bacillus cereus and relatives. Environ Microbiol 5:631–640

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Juhas M, vander Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    Article  CAS  PubMed  Google Scholar 

  • Kaestli M et al (2012) Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environ Microbiol 14:2058–2070

    Article  PubMed  Google Scholar 

  • Kang YW, Carlson R, Tharpe W, Schell MA (1998) Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl Environ Microbiol 64:3939–3947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klerks MM, Franz E, van Gent-Pelzer M, Zijlstra C, van Bruggen AHC (2007) Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant–microbe factors influencing the colonization efficiency. ISME J 1:620–631

    Article  PubMed  Google Scholar 

  • Knief C et al (2011) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen GR, Walter MV, Porteous LA, Prince VJ, Amstrong JL, Seidler RJ (1988) Predictive model of conjugated plasmid transfer in the rhizosphere and phyllosphere. Appl Environ Microbiol 54:343–347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi DY, Gugliemoni M, Clarke BB (1995) Isolation of chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turf grass. Soil Biol Biochem 27:1479–1487

    Article  CAS  Google Scholar 

  • Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant pathogenic fungi and the plant parasitic nematode Meloidogyne incognita (Kofoid and White) Chitwood. Can J Microbiol 48:772–786

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Munder A, Aravind R, Eapen SJ, Tűmmler B, Raaijmakers JM (2013) Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ Microbiol 15:764–779

    Article  CAS  PubMed  Google Scholar 

  • Lambert B, Frederik L, Van Rooyen L, Gossele F, Papon Y, Swings J (1987) Rhizobacteria of maize and their antifungal activities. Appl Environ Microbiol 53:1866–1871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EY, Jun YS, Cho KS, Ryu HW (2002) Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by Stenotrophomonas maltophilia T3-c. J Air Waste Manag Assoc 52:400–406

    Article  CAS  PubMed  Google Scholar 

  • Lottmann J, Berg G (2001) Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and non-transgenic potato plants. Microbiol Res 156:75–82

    Article  CAS  PubMed  Google Scholar 

  • Lottmann J, Heuer H, Smalla K, Berg G (1999) Influence of transgenic T4-lysozyme-producing plants on beneficial plant-associated bacteria. FEMS Microb Ecol 29:365–377

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JM (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM (ed) The Rhizosphere. Wiley, Chichester, pp 1–10

    Google Scholar 

  • Mark GL et al (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe–plant interactions. P Natl Acad Sci USA 102:17454–17459

    Article  CAS  Google Scholar 

  • Meeting FB (1992) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York

    Google Scholar 

  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117

    Article  CAS  PubMed  Google Scholar 

  • Mendes A, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaption by rhizosphere bacteria. Ann Rev Microbiol 50:101–136

    Article  CAS  Google Scholar 

  • Moller LV, Arends JP, Harmsen HJ, Talens A, Terpstra P, Slooff MJ (1999) Ochrobactrum intermedium infection after liver transplantation. J Clin Microbiol 37:241–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morales A, Garland JL, Lim DV (1996) Survival of potentially pathogenic human-associated bacteria in the rhizosphere of hydroponically grown wheat. FEMS Microb Ecol 20:155–162

    Article  CAS  Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mitzutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334–4339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann G, Römheld V (2001) The release of root exudates as affected by the plant’s physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, NY, pp 41–93

    Google Scholar 

  • Nithya A, Babu S (2017) Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India. BMC Microbiol 17:1–16

    Article  CAS  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:206–214

    Article  CAS  Google Scholar 

  • Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258

    Article  CAS  PubMed  Google Scholar 

  • Pierret A, Doussan C, Capowiez Y, Bastardie F, Pagès L (2007) Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone J 6:269–281

    Article  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rahme LG, Stevens EJ, Wolfort SF, Shoa J, Tompkins RG, Ausubel FM (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902

    Article  CAS  PubMed  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989

    Article  CAS  PubMed  Google Scholar 

  • Saunders JR, Allison H, James CE, McCarthy AJ, Sharp R (2001) Phage-mediated transfer of virulence genes. J Chem Technol Biotechnol 76:662–666

    Article  CAS  Google Scholar 

  • Schwieger F, Tebbe CC (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)–linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Environ Microbiol 66:3556–3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting abilities. Can J Microbiol 50:239–249

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Paliwal JS, Chopra P, Dogra D, Pooniya V, Bisaria VS, Swarnalakshmi K, Sharma S (2017) Survival, efficacy and risk assessment of bacterial inoculants in Cajanus cajan. Agric Ecosyst Environ 240:244–252

    Article  Google Scholar 

  • Sørensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: Van Elsas JD, Trevors JT, EMH W (eds) Modern soil microbiology. Marcel Dekker, New York, NY, pp 21–45

    Google Scholar 

  • Steinkamp G, Wiedemann B, Rietschel E, Krahl A, Giehlen J, Barmeier H, Ratjen F (2005) Prospective evaluation of emerging bacteria in cystis fibrosis. J Cyst Fibros 4:41–48

    Article  CAS  PubMed  Google Scholar 

  • Strawn LK et al (2013) Landscape and meteorological factors affecting prevalence of three food-borne pathogens in fruit and vegetable farms. Appl Environ Microbiol 79:588–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suckstorff I, Berg G (2003) Evidence for dose-dependent effects on plant growth by Stenotrophomonas strains from different origins. J Appl Microbiol 95:656–663

    Article  CAS  PubMed  Google Scholar 

  • Tabacchioni S, Bevivino A, Dalmastri C, Chiarini L (2002) Burkholderia cepacia complex in the rhizosphere: a minireview. Ann Microbiol 52:103–117

    Google Scholar 

  • Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A 96:2408–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teplitski M, Barak JD, Schneider KR (2009) Human enteric pathogens in produce: un-answered ecological questions with direct implications for food safety. Curr Opin Biotechnol 20:166–171

    Article  CAS  PubMed  Google Scholar 

  • Thomashow LS, Bonsall RF, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst CJ, Knudson GR, MJ MI, Setzenbach LD, Walter MV (eds) Manual of environmental microbiology. American Society for Microbiology Press, Washington, DC, pp 493–499

    Google Scholar 

  • Toth IK, Pritchard L, Birch PR (2006) Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu Rev Phytopathol 44:305–336

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AK, Verma SC, Ron EZ (2002) Molecular characterization of a salt-tolerant bacterial community in the rice rhizosphere. Res Microbiol 153:579–584

    Article  CAS  PubMed  Google Scholar 

  • Troxler J, Azelvandre P, Zala M, Defago G, Haas D (1997) Conjugative transfer of chromosomal genes between fluorescents pseudomonads in the rhizosphere of wheat. Appl Environ Microbiol 63:213–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed  Google Scholar 

  • Tyler HL, Triplett EW (2008) Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu Rev Phytopathol 46:53–73

    Article  CAS  PubMed  Google Scholar 

  • Ursell LK, Metcalf JL, Parfrey LW, Knight R (2012) Defining the human microbiome. Nutr Rev 70:S38–S44

    Article  PubMed  Google Scholar 

  • van Baarlen P, van Belkum A, Summerbell RC, Crous PW, Thomma B (2007) Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol Rev 31:239–277

    Article  CAS  PubMed  Google Scholar 

  • van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Wang HB et al (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10:932–940

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Huang T, Dalwadi H, Sutton CL, Bruckner D, Braun J (2002) Pseudomonas fluorescens encodes the Crohn’s disease-associated I2 sequenceand T-cell superantigen. Infect Immun 70:6567–6575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Wang H, Zhang Z, Lin R, Lin W (2011) Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS One 6:e20611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by grant received from the Department of Biotechnology, Government of India (BT/PR5499/AGR/21/355/2012). RS wishes to acknowledge the fellowship received from CSIR, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Bisaria, V.S., Sharma, S. (2019). Rhizosphere: A Home for Human Pathogens. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Biotic Interactions . Springer, Cham. https://doi.org/10.1007/978-3-030-26657-8_8

Download citation

Publish with us

Policies and ethics