Skip to main content

Plant Microbe Interface: The Plant Antimicrobial Peptides

  • Chapter
  • First Online:
Plant Biotic Interactions
  • 602 Accesses

Abstract

Antimicrobial peptides (AMPs) are known to play important roles in plant development and stress tolerance. The AMPs are involved in the defense reaction of innate plant immunity and are known to increase the transcription level in response to abiotic or biotic stress factors. There are numerous reports available on the structure and the in vitro efficiency of antimicrobial peptides against phytopathogens. This chapter provides the available pipelines to identify the plant AMPs and its role in mediating the defense in plants in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asiegbu FO, Choi W, Li G, Nahalkova J, Dean RA (2003) Isolation of a novel antimicrobial peptide gene (SpAMP) homologue from Pinus sylvestris (scots pine) following infection with the root rot fungus Heterobasidion annosum. FEMS Microbiol Lett 228:27–31

    Article  CAS  Google Scholar 

  • Cammue BPA, De Bolle MFC, Terras FRG, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J Biol Chem 267:2228–2233

    CAS  PubMed  Google Scholar 

  • Egorov TA, Odintsova TI, Vitaliy A, Pukhalsky VA, Grishin EV (2005) Diversity of wheat anti-microbial peptides. Peptides 26:2064–2073

    Article  CAS  Google Scholar 

  • Gillon AD, Saska I, Jennings CV, Guarino RF, Craik DJ, Anderson MA (2008) Biosynthesis of circular proteins in plants. Plant J 53:505–515

    Article  CAS  Google Scholar 

  • Huffaker A, Ryan CA (2007) Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci USA 104:10732–10736

    Article  CAS  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci USA 103:10098–10103

    Article  CAS  Google Scholar 

  • Huffaker A, Dafoe NJ, Schmelz EA (2011) ZmPep1, an Ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol 155:1325–1338

    Article  CAS  Google Scholar 

  • Ke T, Cao H, Huang J, Hu F, Huang J, Dong C, Ma X, Yu J, Mao H, Wang X, Niu Q, Hui F, Liu S (2015) EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus. BMC Genomics 16:653

    Article  Google Scholar 

  • Kovtun A, Shelenkov A, Odintsova T (2018) The diversity of putative antimicrobial peptides revealed in wheat by high throughput next generation transcriptome sequencing. 43rd FEBS Congress, Prague

    Google Scholar 

  • Mirouze M, Sels J, Richard O, Czernic P, Loubet S, Jacquier A, François IEJA, Cammue BPA, Lebrun M, Berthomieu P, Marque L (2006) A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J 47:329–342

    Article  CAS  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Gozdzicka-Jozefiak A (2014) Plant antimicrobial peptides. Folia Microbiol 59(3):181–196

    Article  CAS  Google Scholar 

  • Park CJ, Park CB, Hong SS, Lee HS, Lee SY, Kim SC (2000) Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd’s purse, Capsella bursa-pastoris. Plant Mol Biol 44:187–197

    Article  CAS  Google Scholar 

  • Pearce G, Yamaguchi Y, Barona G, Clarence A (2010) Ryan A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense related genes. PNAS 107(33):14921–14925

    Article  CAS  Google Scholar 

  • Ramada MHS, Brand GD, Abrão FY, Oliveira M, Cardozo Filho JL, Galbieri R, Gramacho KP, Prates MV, Bloch C Jr (2017) Encrypted antimicrobial peptides from plant proteins. Sci Rep 7:13263

    Article  CAS  Google Scholar 

  • Salas CE, Badillo-Corona JA, Ramírez-Sotelo G, Oliver-Salvador C (2014) Biologically active and antimicrobial peptides from plants. Biomed Res Int 2015:11

    Google Scholar 

  • Silva ON, Porto WF, Migliolo L, Mandal SM, Gomes DG, Holanda HH, Silva RS, Dias SC, Costa MP, Costa CR, Silva MR, Rezende TM, Franco OL (2012) Cn-AMP1: a new promiscuous peptide with potential for microbial infections treatment. Biopolymers 98(4):322–331

    Article  CAS  Google Scholar 

  • Slavokhotova AA, Shelenkov AA, Odintsova TI (2015) Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly. Plant Mol Biol 89:203–214

    Article  CAS  Google Scholar 

  • Umadevi P, Soumya M, George JK, Anandaraj M (2018) Proteomics assisted profiling of antimicrobial peptide signatures from black pepper (Piper nigrum L.). Physiol Mol Biol Plants 24(3):379–387

    Article  CAS  Google Scholar 

  • Utkina LL, Yaroslav AA, Eugene AR, Tatyana VK, Anna AS, Peter BO, Vassilevski AA, Eugene VG, Tsezi AE, Tatyana IO (2013) Genes encoding 4-Cys antimicrobial peptides in wheat Triticum kiharae Dorof. et Migush.: multimodular structural organization, intraspecific variability, distribution and role in defence. FEBS J 280:3594–3608

    Article  CAS  Google Scholar 

  • Wang Q, Yanga S, Liua J, Terecskeib K, Ábrahámb E, Gombárc A, Domonkosc A, Szucsb A, Körmöczib P, Wangb T, Fodorc L, Maod L, Feid Z, Kondorosib E, Kalóc P, Keresztb A, Zhua H (2017) Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula. PNAS 114(26):6854–6859

    CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Pearce G, Ryan CA (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci U S A 103:10104–10109

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–522

    Article  CAS  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manivannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manivannan, S., Umadevi, P. (2019). Plant Microbe Interface: The Plant Antimicrobial Peptides. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Biotic Interactions . Springer, Cham. https://doi.org/10.1007/978-3-030-26657-8_15

Download citation

Publish with us

Policies and ethics