Skip to main content

Enhancement of Active Constituents of Medicinal Plants Through the Use of Microbes

  • Chapter
  • First Online:

Abstract

The traditional system of medicine plays a pivotal role in primary health care for the prevention and treatment of various ailments. Plants are an important source of biologically active compounds with therapeutic properties. These active compounds are commonly called as phytoconstituents or phytochemicals and are of significant importance in the efficacy of medicinal plants. These are mainly produced in those plants which are under stressful conditions. The amount of phytochemicals varies from plant to plant, and their concentration depends on location, local climate, and types of soil. Medicinal plants are normally collected from their natural and wild habitat, but now due to their growing market demand by the pharmaceutical industries, they are also cultivated. However, the cultivated plants may have lower efficacy due to the presence of lower amounts of active ingredients. This chapter focuses on the role and interactions of microbes with medicinal plants, impact on their functional efficacy, and possible synergistic role in quantitative enhancement of bioactive phytoconstituents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arpana J, Bagyaraj DJ (2007) Response of kalmegh to an arbuscular mycorrhizal fungus and a plant growth promoting rhizo-microorganism at two levels of phosphorus fertilizers. Am-Euras J Agric Environ Sci 2:33–38

    Google Scholar 

  • Badiane NNY, Chotte JL, Patê E, Masse D, Rouland D (2001) Use of soil enzymes activities to monitor soil quality in natural and improve fallows in semi-arid tropical regions. Appl Soil Ecol 18:229–238

    Article  Google Scholar 

  • Bahadori F, Ashorabadi ES, Mirza M, Matinizade M, Abdosi V (2013) Improved growth, essential oil yield and quality in Thymus daenensis Celak on mycorrhizal and plant growth promoting rhizobacteria inoculation. Int J Agron Plant Prod 4:3384–3391

    Google Scholar 

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth. Plant Signal Behav 7:1–7

    Article  CAS  Google Scholar 

  • Banchio E, Bogino PC, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improves growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771

    Article  CAS  Google Scholar 

  • Banchio E, Xie X, Zhang H, Pare PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Berg G, Alavi M, Schmidt CS, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B (2013) Biocontrol and osmoprotection for plants under saline conditions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, NJ

    Google Scholar 

  • Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    Article  CAS  PubMed  Google Scholar 

  • Cappellari LR, Santoro MV, Nievas F, Giordano W, Banchio E (2013) Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol 70:16–22

    Article  Google Scholar 

  • Das K, Dang R (2010) Influence of biofertilizers on stevioside content in Stevia rebaudiana grown in acidic soil condition. Arch Appl Sci Res 4:44–49

    Google Scholar 

  • Das SK, Varma A (2011) Role of enzymes in maintaining soil health. In: Shukla G, Varma A (eds) Soil enzymology, Soil biology, vol 22. Springer, Heidelberg

    Google Scholar 

  • Ding C-H, Wang Q-B, Guo S, Wang Z-y (2018) The improvement of bioactive secondary metabolites accumulation in Rumex gmelini Turcz through co-culture with endophytic fungi. Braz J Microbiol 49(2):362–369

    Article  CAS  PubMed  Google Scholar 

  • Doughari JH, Human IS, Bennade S, Ndakidemi PA (2009) Phytochemicals as chemotherapeutic agents and antioxidants: possible solution to the control of antibiotic resistant verocytotoxin producing bacteria. J Med Plant Res 3:839–848

    CAS  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A et al (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:896

    Article  CAS  Google Scholar 

  • Egamberdieva D (2011) Role of microorganisms in nitrogen cycling in soils. In: Miransari M (ed) Soil nutrients. Nova Science, New York, pp 159–176

    Google Scholar 

  • Egamberdieva D, Teixeira da Silva JA (2015) Chapter 14: medicinal plants and PGPR: a new frontier for phytochemicals. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, New York

    Chapter  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of rhizobium with root colonizing Pseudomonas. Plant Soil 369(1):453–465

    Article  CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindstrom K, Rasanen L (2010) Root colonizing Pseudomonas spp. improve growth and symbiosis performance of fodder galega (Galega orientalis LAM) grown in potting soil. Eur J Soil Biol 46:269–272

    Article  CAS  Google Scholar 

  • Elango KV (2004) Studies on the effect of native AM fungi and PGPR’s on growth and productivity of Gloriosa superba L. Ph.D. thesis, Bharathidasan University, Tiruchrappalli, Tamil Nadu, India

    Google Scholar 

  • Ferri LA, Alves-Do-Prado W, Yamada SS, Gazola S, Batista MR, Bazotte RB (2006) Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytother Res 20:732–737

    Article  CAS  PubMed  Google Scholar 

  • Geitang W, Honggang W (1989) Effects of VA Mycorrhizal fungi on growth, nutrient uptake and effective compounds in Chinese medicinal herb Datura stramonium L. Sci Agric Sin 5:1989–1905

    Google Scholar 

  • Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity and essential oil composition. J Sci Food Agric 90:696–702

    CAS  PubMed  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Gupta M, Bisht S, Singh B, Gulati A, Tewari R (2011) Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate-solubilizing bacteria and rock phosphate. Plant Growth Regul 65:449–457

    Article  CAS  Google Scholar 

  • Gupta ML, Prasad A, Ram M, Kuma S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Egamberdieva D, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York, pp 139–159

    Chapter  Google Scholar 

  • Han SH, Lee SJ, Moon JH et al (2006) GacS-dependent production of 2,3-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19:924–930

    Article  CAS  PubMed  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Jabborova D, Egamberdieva D, Räsänen L, Liao H (2013) Salt tolerant Pseudomonas strain improved growth, nodulation and nutrient uptake of soybean grown under hydroponic salt stress condition. In: XVII international plant nutrition colloquium and boron satellite meeting proceedings book, Istanbul, Turkey, pp 260–261

    Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamalizadeh M, Etebarian HR, Aminian H et al (2010) Biological control of Botrytis mali on apple fruit by use of Bacillus bacteria, isolated from the rhizosphere of wheat. Arch Phytopathol Plant Protect 43:1836–1845

    Article  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jorquera MA, Shaharoona B, Nadeem SM, de la Luz Mora M, Crowley DE (2012) Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb Ecol 64:1008–1017

    Article  PubMed  Google Scholar 

  • Juliani HR, Kapteyn J, Jones D, Koroch AR, Wang M, Charles D, Simon JE (2006) Application of near-infrared spectroscopy in quality control and determination of adulteration of African essential oils. Phytochem Anal 17:121–128

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002) Glomus macrocarpum a potential bioinoculant to improve essential oil quality and concentration in dill (Anethum graveolens L.) and carum (Trachyspermum amni (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463

    Article  CAS  Google Scholar 

  • Karagiannidis N, Thomidis T, Lazari D, Panou-Filotheou E, Karagiannidou C (2012) Response of three mint and two oregano species to Glomus etunicatum inoculation. Aust J Crop Sci 6:164–169

    Google Scholar 

  • Karthikeyan B, Joe MM, Jaleel CA (2009) Response of some medicinal plants to vesicular arbuscular mycorrhizal inoculations. J Sci Res 1:381–386

    Article  Google Scholar 

  • Kaufman PB, Cseke LJ, Warber S, Duke JA, Brielmann HL (1999) Natural products from plants. CRC, Boca Raton, FL

    Google Scholar 

  • Kavitha C, Rajamani K, Vadivel E (2010) Coleus forskohlii: a comprehensive review on morphology, phytochemistry and pharmacological aspects. J Med Plant Res 4:278–285

    CAS  Google Scholar 

  • Keû A, Slimene IB, Karkouch I, Rihouey C, Azaeiz S, Bejaoui M, Belaid R, Cosette P, Jouenne T, Limam F (2015) Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World J Microbiol Biotechnol 31:1967–1976

    Article  CAS  Google Scholar 

  • Kim JG, Park BK, Kim SU et al (2006) Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan Horse antibiotic that controls crown gall. Proc Natl Acad Sci U S A 103:8846–8851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite – what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz SA, Sharaf-Eldin MA (2007) Effect of mineral vs. biofertilizer on growth, yield and essential oil content of fennel (Foeniculum vulgare mill.). Int Agrophys 21:361–366

    CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Miller SH, Browne P, Prigent-Cambaret C, Combes-Meynet E, Morrissey JP, O’Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilisation in Pseudomonas species. Environ Microbiol Rep 2:403–411

    Article  CAS  PubMed  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Palombo EA (2006) Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function. Phytother Res 20:717–724

    Article  CAS  PubMed  Google Scholar 

  • Phillipson JD (2001) Phytochemistry and medicinal plants. Phytochemistry 56:237–243

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Sharma M, Kamal S, Rai MK, Rawat AKS, Pushpangdan P, Varma A (2008) Interaction of Piriformospora indica with medicinal plants. In: Varma A (ed) Mycorrhiza. Springer, Heidelberg, pp 655–678

    Chapter  Google Scholar 

  • Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Riaz-Ul-Hussain S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springer Plus 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiang X, Weiss M, Kogel KH, Schafer P (2012) Piriformospora indica a mutualistic basidiomycete with an exceptionally large plant host range. Mol Plant Pathol 13:508–518

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr Bot 2:27–30

    Google Scholar 

  • Raudales RE, Stone E, McSpadden Gardener BB (2009) Seed treatment with 2,4-diacetylphloroglucinol-producing pseudomonads improves crop health in low-pH soils by altering patterns of nutrient uptake. Phytopathology 99:506–511

    Article  CAS  PubMed  Google Scholar 

  • Sailo GL, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109:795–798

    Article  CAS  PubMed  Google Scholar 

  • Sarker SD, Nahar L (2007) Chemistry for pharmacy students general, organic and natural product chemistry. Wiley, Chichester, pp 283–359

    Google Scholar 

  • Selvaraj T, Sumithra P (2011) Effect of Glomus aggregatum and plant growth promoting rhizo-microorganisms on growth, nutrition and content of secondary metabolites in Glycyrrhiza glabra L. Indian J Appl Pure Biol 26:283–290

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shi AD, Li Q, Huang JG, Yuan L (2013) Influence of arbuscular mycorrhizal fungi on growth, mineral nutrition and chlorogenic acid content of Lonicera confusa seedlings under field conditions. Pedosphere 23:333–339

    Article  CAS  Google Scholar 

  • Shirley M, Avoscan L, Bernaud E, Vansuyt G, Lemanceau P (2011) Comparison of iron acquisition from Fe-pyoverdine by strategy I and strategy II plants. Botany 89:731–735

    Article  CAS  Google Scholar 

  • Siddikee M, Chauhan P, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6:69–87

    CAS  Google Scholar 

  • Singh R, Soni SK, Kalra A (2012) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq under organic field conditions. Mycorrhiza 23:35–44

    Article  PubMed  Google Scholar 

  • Singh R, Arora NK (2016) Growth enhancement of medicinal plant Withania somnifera using phosphate solubilizing endophytic bacteria Pseudomonas sp. as bioinoculant. Inter J Sci Technol Soci 2(1&2):13–18

    Google Scholar 

  • Tajpoor N, Moradi R, Zaeim AN (2013) Effects of various fertilizers on quantity and quality of dill (Anethum graveolens L.) essential oil. Int J Agric Crop Sci 6:1334–1341

    Google Scholar 

  • Teixeira da Silva JA, Egamberdieva D (2013) Plant-growth promoting rhizobacteria and medicinal plants. In: Govil JN, Bhattacharya S (eds) Recent progress in medicinal plants, essential oils III and phytopharmacology, vol 38. Studium, Houston, TX, pp 26–42

    Google Scholar 

  • Tiwari R, Kalra A, Darokar MP, Chandra M, Aggarwal N, Singh AK, Khanuja SPS (2010) Endophytic bacteria from Ocimum sanctum and their yield enhancing capabilities. Curr Microbiol 60:167–171

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496

    Article  CAS  PubMed  Google Scholar 

  • Van Wyk BE, Wink M (2004) Medicinal plants of the world. Briza, Pretoria, pp 54–56

    Google Scholar 

  • Walker EL, Connolly EL (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11:530–535

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Ng J, Shi M, Wu SJ (2007) Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root bacteria co-culture process. Appl Microbiol Biotechnol 77:543–550

    Article  CAS  PubMed  Google Scholar 

  • Yehuda Z, Shenker M, Hadar Y, Chen YN (2000) Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin. J Plant Nutr 23:1991–2006

    Article  CAS  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Pare PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Ashok K. Chauhan, Founder President, Amity Group of Institutions, and Mr. Atul Chauhan, Chancellor, Amity University UP, Noida, for the encouragement, research facilities, and financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, C., Prakash, D. (2019). Enhancement of Active Constituents of Medicinal Plants Through the Use of Microbes. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Biotic Interactions . Springer, Cham. https://doi.org/10.1007/978-3-030-26657-8_13

Download citation

Publish with us

Policies and ethics