Skip to main content

Plants for Biocontrol and Biological Control of Plant Pathogens

  • Chapter
  • First Online:
Plant Biotic Interactions

Abstract

For maintaining the quality and quantity of food produced around the world, the plant diseases are needed to be controlled. To prevent and control plant diseases, different methods may be employed including chemical fertilizers and pesticides which have significantly improved the crop productivity and quality over the past many years. However, there are strict regulations on the use of chemical because of its hazardous effect. But some pest management researchers have developed alternatives which are referred to as biological controls for controlling pests and diseases by the application of biocontrol plants and also by the use of plant–microbe interactions for controlling plant pathogens. This chapter focuses on the various plants which are used for biocontrol and how they can be helpful in sustainable development. Similarly, how to use microbes and other organisms for the control of plant diseases has also been studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullahi N (2015) Postharvest management of fruits and vegetables. Tech Sci Afr J 11:93–100

    Google Scholar 

  • Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour Technol 74(1):35–47

    Article  CAS  Google Scholar 

  • Angus TA (1954) A bacterial toxin paralyzing silkworm larvae. Nature 173:545–546

    Article  CAS  PubMed  Google Scholar 

  • Atibalentja N, Noel GR, Domier LL (2000) Phylogenetic position of the north American isolates of Pasteuria that parasitizes the soybean cyst nematodes, Heteroderaglycines, as inferred from 16S rDNA sequence analysis. Int J Syst Evol Microbiol 50:605–613

    Article  CAS  PubMed  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Hofte M (2002) Introduction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, Pyochelin, and Pyocyanin. Mol Plant-Microbe Interact 2:47–56

    Google Scholar 

  • Babychan M (2017) Biocontrol agents in management of post-harvest diseases. Life Sci Int Res J 4(1):51–53

    Google Scholar 

  • Bailey BA, Den RL (2014) Gliocladium on plant growth and resistance to pathogens. In: Harman GE, Kubicek CP (eds) Trichoderma and gliocladium, Volume 2: Enzymes, biological control and commercial applications. CRC Press, Boca Raton, FL, p 185

    Google Scholar 

  • Baker KF, Cooker RJ (1974) In: Kelman A, Sequiera L (eds) Biological control of plant pathogens. Freeman, San Francisco, CA, 433 pp

    Google Scholar 

  • Barea JM (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15(2):261–282

    CAS  Google Scholar 

  • Berliner E (1915) Uber die Schlaffsucht der Mehlmottenraupe (EphestiaKuhniella, Zell.) und ihrenErreger Bacillus thuringiensis, n. sp. Z Angew Entomol 2:29–56

    Article  Google Scholar 

  • Bhargava P, Singh AK, Goel R (2017) Microbes: bioresource in agriculture and environmental sustainability. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 361–376

    Chapter  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Braga FR, Araujo JM, Araújo JVD, Soares FEDF, Tavela ADO, Frassy LN et al (2013) In vitro predatory activity of conidia of fungal isolates of the Duddingtonia flagrans on Angiostrongylus vasorum first-stage larvae. Rev Soc Bras Med Trop 46(1):108–110

    Article  PubMed  Google Scholar 

  • Bravo A, Pacheco S, Gómez I, Garcia-Gómez B, Onofre J, Soberón M (2017) Insecticidal proteins from Bacillus thuringiensis and their mechanism of action. In: Fiuza LM, Polanczyk RA, Crickmore N (eds) Bacillus thuringiensis and Lysinibacillus sphaericus. Springer, Cham, pp 53–66

    Chapter  Google Scholar 

  • Brennan EB (2016) Agronomy of strip intercropping broccoli with alyssum for biological control of aphids. Biol Control 97:109–119

    Article  Google Scholar 

  • Burnell AM, Stock SP (2000) Heterorhabditis, Steinernema and their bacterial symbionts—lethal pathogens of insects. Nematology 2(1):31–42

    Article  Google Scholar 

  • Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020

    PubMed  PubMed Central  Google Scholar 

  • Coda R, Rizzello CG, Di Cagno R, Trani A, Cardinali G, Gobbetti M (2013) Antifungal activity of Meyerozyma guilliermondii: identification of active compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiol 33(2):243–251

    Article  PubMed  Google Scholar 

  • Crickmore N (2005) Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbiol 13:347–350

    Article  CAS  PubMed  Google Scholar 

  • Darban DA, Gowen SR, Pembroke B (2017) Soil bioassay with time interval and spore density factors affecting the infection of Meloidogyne javanica by Pasteuria penetrans. Pak J Nematol 35(2):209–213

    Article  Google Scholar 

  • de Maagd RA (2015) Bacillus thuringiensis-based products for insect pest control. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 185–192

    Google Scholar 

  • de Maagd RA, Bosch D, Stiekema WJ (1999) Bacillus thuringiensis toxin mediated insect resistance in plants. Trends Plant Sci 4:9–13

    Article  PubMed  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37(1):409–433

    Article  PubMed  CAS  Google Scholar 

  • de Ulzurrun GVD, Hsueh YP (2018) Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin. Appl Microbiol Biotechnol 102(9):3939–3949

    Article  CAS  Google Scholar 

  • Ebert D, Zschokke-Rohringer CD, Carius HJ (1998) Within–and between–population variation for resistance of Daphnia magna to the bacterial endoparasite Pasteuria ramosa. Proc R Soc Lond B Biol Sci 265(1410):2127–2134

    Article  Google Scholar 

  • EFSA Panel on Genetically Modified Organisms (2010) Guidance on the environmental risk assessment of genetically modified plants. EFSA J 8:1879–1990

    Article  Google Scholar 

  • Ehlers RU (2005) Forum on safety and regulation. In: Grewal PS, Ehlers RU, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CABI, Oxford, pp 107–115

    Chapter  Google Scholar 

  • El-Borai FE, Zellers JD, Duncan LW (2007) Suppression of Diaprepes abbreviatus in potted citrus by combinations of entomopathogenic nematodes with different lifespans. Nematropica 37:33–41

    Google Scholar 

  • English L, Slatin SL (1990) Mode of action of delta-endotoxins from Bacillus thuringiensis: a comparison with other bacterial toxins. Insect Biochem Mol Biol 22:1–7

    Article  Google Scholar 

  • Entwistle P, Bailey MC, Cory JC, Higgs SC (1993) Bacillus thuringiensis: an environmental biopesticides: theory and practice. Wiley, Chichester

    Google Scholar 

  • Glare TR, O’callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, New York

    Google Scholar 

  • Goel R, Bhargava P, Gupta N, Vats S (2017) Health issues and heavy metals. Austin J Environ Toxicol 3(1):1018

    Google Scholar 

  • Goldberg LJ, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq News 37:355–358

    Google Scholar 

  • Goodrich-Blair H, Clarke DJ (2007) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64:260–268

    Article  CAS  PubMed  Google Scholar 

  • Grewal PS (2012) Entomopathogenic nematodes as tools in integrated pest management. In: Abrol DP, Shankar U (eds) Integrated pest management: principles and practice. CABI, Wallingford, pp 162–236

    Chapter  Google Scholar 

  • Gupta N, Vats S, Bhargava P (2018) Sustainable agriculture: role of metagenomics and metabolomics in exploring the soil microbiota. In: Choudhary DK, Kumar M, Prasad R, Kumar V (eds) In Silico approach for sustainable agriculture. Springer, Singapore, pp 183–199

    Chapter  Google Scholar 

  • Harman GE, Kubicek CP (2014) Trichoderma and Gliocladium, Vol 2, Enzymes, biological control and commercial applications. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M et al (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66(6):2627–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heungens K, Cowles CE, Goodrich-Blair H (2002) Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes. Mol Microbiol 45:1337–1353

    Article  CAS  PubMed  Google Scholar 

  • Hilbeck A (2002) Transgenic host plant resistance and non-target effects. In: Letourneau DK, Burrows BE (eds) Genetically engineered organisms: assessing environmental and human health effects. CRC, Boca Raton, FL, pp 167–185

    Google Scholar 

  • Hofmann C, Vanderbruggen H, Hofte H, Van Rie J, Jansens S, Van Mellaert H (1988) Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci U S A 85:7844–7848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Zhang K, Yu Z, Li G (2015) Microbial control of phytopathogenic nematodes. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 155–164

    Google Scholar 

  • Ibrahim MA, Griko N, Junker M, Bulla LA (2010) Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng Bugs 1(1):31–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishiwata S (1901) On a kind of severe flacherie (sotto disease). Dainihon Sanshi Kaiho 114:1–5

    Google Scholar 

  • Jain P, Miglani K, Vats S (2011) Aptamers-potential applications in diagnostics and therapeutics. Everyman’s Sci XLV(6):361

    Google Scholar 

  • Kaur A, Vats S, Rekhi S, Bhardwaj A, Goel J, Tanwar RS, Gaur KK (2010) Physico-chemical analysis of the industrial effluents and their impact on the soil microflora. Procedia Environ Sci 2:595–599

    Article  Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206

    Article  Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120(4):373–382

    Article  Google Scholar 

  • Knowles BH (1994) Mechanism of action of Bacillus thuringiensis δ-endotoxins. Adv Insect Physiol 24:275–308

    Article  CAS  Google Scholar 

  • Koenning SR, Wrather JA, Kirkpatrick TL, Walker NR, Starr JL, Mueller JD (2004) Plant-parasitic nematodes attacking cotton in the United States: old and emerging production challenges. Plant Dis 88(2):100–113

    Article  PubMed  Google Scholar 

  • Koppenhöfer AM (2007) Nematodes. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 249–264

    Chapter  Google Scholar 

  • Kotze AC, O’grady J, Gough JM, Pearson R, Bagnall NH, Kemp DH, Akhurst RJ (2005) Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Int J Parasitol 35(9):1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Koziel GM, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Maddox D, McPherson K, Heghji M, Merlin E, Rhodes R, Warren G, Wright M, Evola S (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nat Biotechnol 11:194–200

    Article  CAS  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Lewis EE, Gaugler R, Harrison R (1992) Entomopathogenic nematode host finding—response to host contact cues by cruise and ambush foragers. Parasitology 105:309–315

    Article  Google Scholar 

  • Li GH, Zhang KQ, Xu JP et al (2007) Nematicidal substances from fungi. Recent Pat Biotechnol 1:212–233

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Budiharjo A, Wang P et al (2013) The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol 97:10081–10090

    Article  CAS  PubMed  Google Scholar 

  • Magan N, Aldred D (2007) Post-harvest control strategies: minimizing mycotoxins in the food chain. Int J Food Microbiol 119:131–139

    Article  CAS  PubMed  Google Scholar 

  • Makoi JH, Ndakidemi PA (2007) Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr J Biotechnol 6(12):1358–1368

    CAS  Google Scholar 

  • Mankau R, Imbriani JL, Bell AH (1976) SEM observations on nematode cuticle penetration by Bacillus penetrans. J Nematol 8:179–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maurya DP, Vats S, Rai S, Negi S (2013) Optimization of enzymatic saccharification of microwave pretreated sugarcane tops through response surface methodology for biofuel. Indian J Exp Biol 51(11):992–996

    CAS  PubMed  Google Scholar 

  • Maurya DP, Singh D, Vats S (2014) Cellulase production and utilization. In: Aurora J (ed) Chemical technology. Lambert Academic Publishing, p 80

    Google Scholar 

  • Molinari S (2011) Natural genetic and induced plant resistance, as a control strategy to plant parasitic nematodes alternative to pesticides. Plant Cell Rep 30:311–323

    Article  CAS  PubMed  Google Scholar 

  • Monaco C, Sisterna M, Perelló A, Dal Bello G (2004) Preliminary studies on biological control of the blackpoint complex of wheat in Argentina. World J Microbiol Biotechnol 20(3):285–290

    Article  Google Scholar 

  • Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol 6(4):245–252

    Article  CAS  PubMed  Google Scholar 

  • Murfin KE, Dillman AR, Foster JM, Bulgheresi S, Slatko BE, Sternberg PW, Goodrich-Blair H (2012) Nematode-bacterium symbioses—cooperation and conflict revealed in the “Omics” age. Biol Bull 223(1):85–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negi S, Vats S (2014) Pine forest litter based bio-refinery for biofuels and value-added phytochemicals. In: Singh RS, Pandey A, Larroche C (eds) Advances in industrial biotechnology. IK International Publishing House, New Delhi, pp 98–116

    Google Scholar 

  • Odum HT (1994) Ecological and general systems: an introduction to systems ecology. University Press of Colorado, Niwot, CO

    Google Scholar 

  • Oestergaard J, Belau C, Strauch O, Ester A, van -Rozen K, Ehlers RU (2006) Biological control of Tipulapaludosa (Diptera: Nematocera) using entomopathogenic nematodes (Steinernemaspp.) and Bacillus thuringiensis subsp. israelensis. Biol Control 39:525–531

    Article  Google Scholar 

  • Ojha AK, Forster S, Kumar S, Vats S, Negi S, Fischer I (2013) Synthesis of well–dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains. J Nanobiotechnol 11(1):42

    Article  CAS  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instr 2:1117–1142

    Google Scholar 

  • Peters A (1996) The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biocontrol Sci Tech 6:389–402

    Article  Google Scholar 

  • Poinar GO Jr (1979) Nematodes for biological control of insects. CRC, Boca Raton, FL, p 249

    Google Scholar 

  • Prusky D, Freeman S, Rodriguez RJ, Keen NT (1994) A nonpathogenic mutant strain of Colletotrichum magna induces resistance to C. gloeosporioides in avocado fruits. Mol Plant Microbe Interact 7(3):326–333

    Article  CAS  Google Scholar 

  • Richards AG, Richards PA (1979) The cuticular protuberances of insects. Int J Insect Morphol Embryol 8(3–4):143–157

    Article  Google Scholar 

  • Ruan L, Crickmore N, Peng D, Sun M (2015) Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis? Trends Microbiol 23(6):341–346

    Article  CAS  PubMed  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  CAS  Google Scholar 

  • Sanchis V (2011) From microbial sprays to insect-resistant transgenic plants: history of the biopesticide Bacillus thuringiensis. A review. Agron Sustain Dev 31(1):217–231

    Article  CAS  Google Scholar 

  • Sayre RM, Wergin WP (1977) Bacterial parasite of a plant nematode: morphology and ultrastructure. J Bacteriol 129:1091–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider SM, Rosskopf EN, Leesch JG, Chellemi DO, Bull CT, Mazzola M (2003) Research on alternatives to methyl bromide: pre-plant and post-harvest. Pest ManagSci 59:814–826

    Article  CAS  Google Scholar 

  • Setati ME, Jacobson D, Andong UC et al (2012) The vineyard yeast microbiome, a mixed model microbial map. PLoS One 7(12):e52609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro-Ilan DI, Gouge DH, Piggott SJ, Fife JP (2006) Application technology and environmental considerations foruse of entomopathogenic nematodes in biological control. Biol Control 38:124–133

    Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS^ sub 9^ in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158(3):243

    Article  CAS  PubMed  Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50(3):205–221

    Article  Google Scholar 

  • Sharma KM, Kumar R, Vats S, Gupta A (2014) Production, partial purification and characterization of alkaline protease from Bacillus aryabhattai K3. Int J Adv Pharm Biol Chem 3(2):290–298

    CAS  Google Scholar 

  • Sharma D, Javed S, Arshilekha PS, Babbar P, Shukla D, Srivastava P, Vats S (2018) Food additives and their effects: a mini review. Int J Curr Res 10(06):69999–70002

    Google Scholar 

  • Shi YM, Bode HB (2018) Chemical language and warfare of bacterial natural products in bacteria–nematode–insect interactions. Nat Prod Rep 35(4):309–335

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Vats S (2019) Mathematically designed bioprocess for release of value added products with pharmaceutical applications from wastes generated from spices industries. Int J Pharm Sci Res 10(1):130–138

    CAS  Google Scholar 

  • Spadaro D, Droby S (2016) Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol 47:39–49

    Article  CAS  Google Scholar 

  • Stotzky G (2000) Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. J Environ Qual 29:691–705

    Article  CAS  Google Scholar 

  • Su H, Zhao Y, Zhou J, Feng H, Jiang D, Zhang KQ, Yang J (2017) Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. Biol Rev 92(1):357–368

    Article  PubMed  Google Scholar 

  • Sudheer KP, Indira V (2007) Post harvest technology of horticultural crops, vol 7. New India Publishing, New Delhi

    Google Scholar 

  • Tanada Y, Kaya HK (2012) Insect pathology. Academic, New York

    Google Scholar 

  • Tandon S, Vats S (2016) Microbial biosynthesis of cadmium sulfide (Cds) nanoparticles and their characterization. Eur J Pharm Med Res 3(9):545–550

    Google Scholar 

  • Thaker M, Hanjabam MD, Gudipati V, Kannuchamy N (2017) Protective effect of fish gelatin-based natural antimicrobial coatings on quality of Indian Salmon fillets during refrigerated storage. J Food Process Eng 40(1):e12270

    Article  CAS  Google Scholar 

  • Thomashow LS (2013) Phenazines in the environment: microbes, habitats, and ecological relevance. In: Chincholkar S, Thomashow L (eds) Microbial phenazines. Springer, Berlin, pp 199–216

    Chapter  Google Scholar 

  • Tian B, Yang J, Zhang KQ (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61(2):197–213

    Article  CAS  PubMed  Google Scholar 

  • Tu C, Koenning SR, Hu S (2003) Root-parasitic nematodes enhance soil microbial activities and nitrogen mineralization. Microb Ecol 46(1):134–144

    Article  CAS  PubMed  Google Scholar 

  • Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beukeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 327:33–37

    Article  Google Scholar 

  • Van Rie J, Jansens S, Hofte H, Degheele D, Van Mellaert H (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta endotoxins. Appl Environ Microbiol 56:1378–1385

    PubMed  PubMed Central  Google Scholar 

  • Vats S (2017) Methods for extractions of value-added nutraceuticals from lignocellulosic wastes and their health application. In: Grumezescu AM, Holban A-M (eds) Ingredients extraction by physicochemical methods in food. Academic, London, pp 1–64

    Google Scholar 

  • Vats S, Bhargava P (2017) Alternate energy: fuel for “Modi’s India” and “smart cities. Int J Curr Res 9(04):49090–49097

    CAS  Google Scholar 

  • Vats S, Kumar R (2015) Amylolytic- extremoenzymes: saviour of environments. Eur J Biomed Pharm Sci 2(5):694–702

    CAS  Google Scholar 

  • Vats S, Miglani K (2011) Synergistic antimicrobial effect of cow urine and Azadirachta indica on infectious microbes. Int J Pharm Sci Res 2(7):1781

    Google Scholar 

  • Vats S, Mishra A (2016) Soil agro-ecological management by vermicompost a potential organic nutrient source for the state of Uttar Pradesh. Eur J Pharm Med Res 3(9):604–609

    Google Scholar 

  • Vats S, Negi S (2013) Use of artificial neural network (ANN) for the development of bioprocess using Pinus roxburghii fallen foliages for the release of polyphenols and reducing sugars. Bioresour Technol 140:392–398

    Article  CAS  PubMed  Google Scholar 

  • Vats S, Kumar R, Negi S (2012) Natural food that meet antibiotics resistance challenge: in vitro synergistic antimicrobial activity of Azadirachta indica, Terminalia chebula, Piper nigrum and photoactivated cow urine. Asian J Pharm Biol Res 2(2):122–126

    Google Scholar 

  • Vats S, Maurya DP, Agarwal A, Shamoonand M, Negi S (2013a) Development of a microbial consortium for the production of blend of enzymes for the hydrolysis of agricultural wastes into sugars. J Sci Ind Res 72:585–790

    CAS  Google Scholar 

  • Vats S, Maurya DP, Jain A, Mall V, Negi S (2013b) Mathematical model-based optimization of physico-enzymatic hydrolysis of Pinus roxburghii needles for the production of reducing sugars. Indian J Exp Biol 51:944–953

    CAS  PubMed  Google Scholar 

  • Vats S, Kumar R, Maurya DP (2014) Alkaline amylase from multi resistant microbes and its applications. In: Alexei E (ed.), Microbiology. Lambert Academic Publishing, p 100

    Google Scholar 

  • Vats S, Singh M, Siraj S, Singh H, Tandon S (2017) Role of nanotechnology in theranostics and personalized medicines. J Health Res Rev 4(1):1

    Article  Google Scholar 

  • Vinciguerra MT, Clausi M (2006) Biological control of chestnut insect pests by means of entomopathogenic nematodes. Adv Hortic Sci 20:40–44

    Google Scholar 

  • Walker K, Mendelsohn M, Matten S et al (2003) The role of microbial Bt products in U.S. crop protection. J New Seeds 5:31–51

    Article  Google Scholar 

  • Wang YC (1997) Effect of preharvest factors on postharvest quality: introduction to the colloquium. HortScience 32(5):807

    Article  Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A 100(5):2760–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whipps JM, Davies KG (2000) Success in biological control of plant pathogens and nematodes by microorganisms. In: Gurr G, Wratten SD (eds) Biological control: measures of success. Springer, Dordrecht, pp 231–269

    Chapter  Google Scholar 

  • Wisniewski M, Biles C, Droby S, McLaughlin R, Wilson C, Chalutz E (1991) Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiol Mol Plant Pathol 39(4):245–258

    Article  CAS  Google Scholar 

  • Zhang Y, Chen K, Zhang S, Ferguson I (2003) The role of salicylic acid in postharvest ripening of kiwi fruit. Postharvest Biol Technol 28(1):67–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, P. et al. (2019). Plants for Biocontrol and Biological Control of Plant Pathogens. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Biotic Interactions . Springer, Cham. https://doi.org/10.1007/978-3-030-26657-8_10

Download citation

Publish with us

Policies and ethics