Skip to main content

Endophytic Microorganisms as Biological Control Agents for Plant Pathogens: A Panacea for Sustainable Agriculture

  • Chapter
  • First Online:
Plant Biotic Interactions

Abstract

The utilization of endophytic microorganisms as natural biological control agents could serve as a permanent replacement to the synthetic chemicals used in the management of plant pathogens. The constant usage of pesticides has led not only to pest and disease resistance but also bioaccumulation and biomagnification of the chemicals, subsequently leading to environmental pollution and health hazards. Mitigating the effects of the long-term usage of chemical pesticides remains one of the greatest challenges in achieving sustainable agriculture. Thus, to achieve sustainable goals, which include safe environment, food safety, healthy lives, and sustainable agriculture, there is an increased need for alternatives in pest management. Utilizing beneficial microorganisms has been considered an alternative. In view of these, this chapter intends to report the recent trends in the application of endophytic microorganisms in the management of plant pathogens and also the use of nanotechnology in the production of biologically active compounds from the endophytic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A (2016) A review paper on Mycoviruses. J Plant Pathol Microbiol 7:390. https://doi.org/10.4172/2157-7471.1000390

    Article  Google Scholar 

  • Abd El-Daim IA, Bejai S, Fridborg I, Meijer J, Pineda A (2018) Identifying potential molecular factors involved in Bacillus amyloliquefaciens 5113 mediated abiotic stress tolerance in wheat. Plant Biol 20(2):271–279

    Article  CAS  PubMed  Google Scholar 

  • Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer, Cham. https://www.springer.com/us/book/9783319911601

    Book  Google Scholar 

  • Adetunji CO, Sarin NB (2017) Impacts of biogenic nanoparticle on the biological control of plant pathogens. Adv Biotechnol Microbiol 7(3):555711. https://doi.org/10.19080/AIBM.2017.07.555711

    Article  Google Scholar 

  • Adetunji CO, Oloke J, Kumar A, Swaranjit S, Akpor B (2017) Synergetic effect of rhamnolipid from Pseudomonas aeruginosa C1501 and phytotoxic metabolite from Lasiodiplodia pseudotheobromae C1136 on Amaranthus hybridus L. and Echinochloa crus-galli weeds. Environ Sci Pollut Res 24:13700–13709

    Article  CAS  Google Scholar 

  • Adetunji CO, Oloke JK, Osemwegie OO (2018a) Environmental fate and effects of granular pest formulation from strains of Pseudomonas aeruginosa C1501 and Lasiodiplodia pseudotheobromae C1136 on soil activity and weeds. Chemosphere 195(2018):98–107. https://doi.org/10.1016/j.chemosphere.2017.12.056

    Article  CAS  PubMed  Google Scholar 

  • Adetunji CO, Phazang P, Sarin NB (2018b) Biosensors: a fast-growing technology for pathogen detection in agriculture and food sector. InTechOpen:1–17. https://doi.org/10.5772/intechopen.74668. In Biosensing technologies for the detection of pathogens—a prospective way for rapid analysis, book edited by Toonika Rinken, Kairi Kivirand, ISBN 978-953-51-3916-4, Print ISBN 978-953-51-3915-7

    Chapter  Google Scholar 

  • Afzal I, Iqrar I, Shinwari ZK, Yasmin A (2016) Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. J Plant Growth Regul:1–10

    Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Ardanov P, Sessitsch A, Häggman H, Kozyrovska N, Pirttila AM (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7(10):e46802. https://doi.org/10.1371/journal.pone.0046802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arogundade O, Balogun OS, Kareem KT (2012) Occurrence and distribution of pepper veinal mottle virus and cucumber mosaic virus in pepper in Ibadan, Nigeria. Virol J 9:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Article  CAS  Google Scholar 

  • Bae H, Sicher RC, Moon SK, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Exp Bot 60(11):3279–2395

    Article  CAS  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204(2):153–168

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Switzerland, pp 307–319

    Chapter  Google Scholar 

  • Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55:61–83. https://doi.org/10.1146/annurev-phyto-080516-035641

    Article  CAS  PubMed  Google Scholar 

  • Bruto M, Prigent-Combaret C, Muller D, Moenne-Loccoz Y (2014) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related proteobacteria. Sci Rep 4:6261. https://doi.org/10.1038/srep06261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplais C, Espindola LS, Stien D (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377

    Article  CAS  PubMed  Google Scholar 

  • Chagas FO, Pessotti RC, Caraballo-Rodríguez AM, Mônica T (2018) Chemical signaling involved in plant–microbe interactions. Chem Soc Rev 47(5):1652–1704

    Article  CAS  PubMed  Google Scholar 

  • Cocq KL, Gurr SJ, Hirsch PR, Mauchline TH (2017) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol 18(3):469–473

    Article  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005b) Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological-control agent Enterobacter cloacae. Mol Plant-Microbe Interact 7:440–448

    Article  CAS  Google Scholar 

  • Dai ZC, Fu W, Wan LY, Cai HH, Wang N, Qi SS, Du D-L (2016) Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front Plant Sci 7:706. https://doi.org/10.3389/fpls.2016.00706

    Article  PubMed  PubMed Central  Google Scholar 

  • De Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(2014):1550–1561

    Article  PubMed  CAS  Google Scholar 

  • Deepika VB, Murali TS, Satyamoorth K (2016) Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: a review. Microbiol Res 182:125–140. https://doi.org/10.1016/j.micres.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  • DESA (2015) World population prospects: the 2015 revision, key findings and advance tables. Working paper no ESA/P/WP 241. United Nations, Department of Economic and Social Affairs (DESA), Population Division, New York

    Google Scholar 

  • Dharni S, Srivastava AK, Samad A, Patra DD (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439

    Article  CAS  PubMed  Google Scholar 

  • Ding T, Palmer MW, Melcher U (2013) Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria. BMC Microbiol 13:1. https://doi.org/10.1186/1471-2180-13-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eljounaidi K, Kyu-Lee S, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases—review and future prospects. Biol Control 103:62–68

    Article  Google Scholar 

  • FAO (2009) Global agriculture towards (2050). How to feed the World 2050. High-level Expert Forum. http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf

  • FAO (2012) IFAD (2012) The state of food insecurity in the world 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. FAO, Rome, pp 1–61

    Google Scholar 

  • Farrer EC, Suding KN (2016) Teasing apart plant community responses to N enrichment: the roles of resource limitation, competition and soil microbes. Ecol Lett 19:1287–1296. https://doi.org/10.1111/ele.12665

    Article  PubMed  Google Scholar 

  • Ferrando L, Scavino AF (2015) Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS Microbiol Ecol 91:fiv104. https://doi.org/10.1093/femsec/fiv104

    Article  CAS  PubMed  Google Scholar 

  • Finyom CWB (2012) Characterisation of the endophytic bacterial communities associated with South African sorghum plants: looking for potential plant growth-promoting endophytes. MSc thesis, pp 1–137

    Google Scholar 

  • Firrincieli A, Otillar R, Salamov A, Schmutz J, Khan Z, Redman RS, Fleck ND, Lindquist E, Grigoriev IV, Doty SL (2015) Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Front Microbiol 6:978. https://doi.org/10.3389/fmicb.2015.00978

    Article  PubMed  PubMed Central  Google Scholar 

  • Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LF, Krogfelt KA, Struve C, Triplett EW, Methé BA (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141. https://doi.org/10.1371/journal.pgen.1000141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332. https://doi.org/10.3389/fmicb.2016.00332

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer International Publishing AG, Switzerland

    Google Scholar 

  • Halliwell B, Gutteridge JM (1999) Oxidative stress and antioxidant protection: some special cases. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 485–543

    Google Scholar 

  • Hamayun M, Afzal Khan S, Ahmad N (2009) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25(4):627–632

    Article  CAS  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurek BR, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 4(4):435–443

    Article  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329(2017):96–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds), Nanotechnology. Springer Nature. Singapore, pp. 305–317

    Chapter  Google Scholar 

  • Jiang D, Fu Y, Ghabrial SA (2013) Mycoviruses: Chapter eight—viruses of the plant pathogenic fungus Sclerotinia sclerotiorum. Adv Virus Res 86:215–248

    Article  CAS  PubMed  Google Scholar 

  • Kidd KA, Muir DCG, Evans MS, Wang XW, Whittle M, Swanson HK, Johnston T, Guildford S (2012) Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics. Sci Total Environ 438:135–143

    Article  CAS  PubMed  Google Scholar 

  • Kõiv V, Roosaare M, Vedler E, Kivistik PA, Toppi K, Schryer DW, Remm M, Tenson T, Mäe A (2015) Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers. Sci Rep 5:11606. https://doi.org/10.1038/srep11606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Belur PD (2016) New extracellular thermostable oxalate oxidase produced from endophytic Ochrobactrum intermedium CL6: purification and biochemical characterization. Prep Biochem Biotechnol 46:734–739

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica a. Juss. That produces azadirachtin. World J Microbiol Biotechnol 28(3):1287–1294. https://doi.org/10.1007/s11274-011-0876-2

    Article  CAS  PubMed  Google Scholar 

  • Kwak MJ, Song JY, Kim SY, Jeong H, Kang SG, Kim BK, Kwon SK, Lee CH, Yu DS, Park SH, Kim JF (2012) Complete genome sequence of the endophytic bacterium Burkholderia sp. strain KJ006. J Bacteriol 194:4432–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Muthamilarasan M, Prasad M (2015) Drought stress responses and signal transduction in plants. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants. Springer, New York, NY, pp 195–225. https://doi.org/10.1007/978-1-4939-2540-7_7

    Chapter  Google Scholar 

  • Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. J Bacteriol 186:5384–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehtonen PT, Helander M, Siddiqui SA, Lehto K, Saikkonen K (2006) Endophytic fungus decreases plant virus infections in meadow ryegrass (Loliumpratense). Biol Lett 2(4):620–623. https://doi.org/10.1098/rsbl.2006.0499

    Article  PubMed  PubMed Central  Google Scholar 

  • Leitão AL, Enguita FJ (2016) Gibberellins in Penicillium strains: challenges for endophyte-plant host interactions under salinity stress. Microbiol Res 183:8–18. https://doi.org/10.1016/j.micres.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Zhang J, Zhang X, Li J, Zhang X, Zhao C (2015) Endophytic fungus from Sinopodophyllum emodi (wall.) Ying that produces Podophyllotoxin. J Chromatogr Sci 54(2):175–178. https://doi.org/10.1093/chromsci/bmv124

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:2552. https://doi.org/10.3389/fmicb.2017.02552

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Oliveira RS, Nai FJ, Rajkumar M, Luo YM, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174(2016):14–25

    Article  CAS  Google Scholar 

  • Mada FA, Bruce B (2017) Isolation, characterization and identification of putative bacterial endophytes from some plants in hot springs, South Dakota. Int J Curr Microbiol Appl Sci 6(6):756–767. https://doi.org/10.20546/ijcmas.606.089

    Article  CAS  Google Scholar 

  • Malinowski DP, Belesky DP (2004) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40(4):923–940

    Article  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227:115–126

    Article  CAS  Google Scholar 

  • Manohari R, Yogalakshmi KN (2016) Optimization of copper (II) removal by response surface methodology using root nodule endophytic bacteria isolated from Vigna unguiculata. Water Air Soil Pollut 227:285

    Article  CAS  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:48479. https://doi.org/10.1371/journal.pone.0048479

    Article  CAS  Google Scholar 

  • Martinez-Garcia PM, Ruano-Rosa D, Schiliro E, Prieto P, Ramos C, Rodríguez-Palenzuela P, Mercado-Blanco J (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahlia. Stand Genomic Sci 10:10. https://doi.org/10.1186/1944-3277-10-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martini M, Musetti R, Grisan S, Polizzotto R, Borselli S, Pavan F, Osler R (2009) DNA- dependent detection of the grapevine fungal Endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Dis 93(10):993–998. https://doi.org/10.1094/PDIS-93-10-0993

    Article  CAS  PubMed  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11(3):251–267

    Article  CAS  Google Scholar 

  • Matsouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100(11):1213–1221

    Article  CAS  Google Scholar 

  • Miraglia M, Marvin HJP, Kleter GA, Battilani P, Brera C, Coni E, Cubadda F, Croci L, De Santis B, Dekkers S, Filippi L, Hutjes RW, Noordam MY, Pisante M, Piva G, Prandini A, Toti L, van den Born GJ, Vespermann A (2009) Climate change and food safety: an emerging issue with special focus on Europe. Food Chem Toxicol 47:1009–1021. https://doi.org/10.1016/j.fct.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh A, Keswani C, Saxena A, Sharma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, India, pp 111–125

    Google Scholar 

  • Mohana Kumara P, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Uma Shaanker R (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.F, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101(2):323–329. https://doi.org/10.1007/s10482-011-9638-2

    Article  CAS  PubMed  Google Scholar 

  • Murmu N (2016) Characterization of culturable endophytes of bfinger millet (Eleusine coracana (L.) Gaertn.) genotype JWM1, MSc thesis, pp 25–32

    Google Scholar 

  • Nadarajah KK (2017) Induction of systemic resistance for disease suppression. In: Abdullah S, Chai-Ling H, Wagstaff C (eds) Crop improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-65079-1_15

    Google Scholar 

  • Narayan CP, Jian XD, Kyu SS, Seung HY (2012) Molecular and morphological characterization of Endophytic Heterobasidion araucariae from roots of Capsicum annuum L. in Korea. Mycobiology 40(2):85–90. https://doi.org/10.5941/MYCO.2012.40.2.85

    Article  Google Scholar 

  • Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, Tuteja N (2016) Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Front Plant Sci 7:1574. https://doi.org/10.3389/fpls.2016.01574

    Article  PubMed  PubMed Central  Google Scholar 

  • Nath M, Bhatt D, Prasad R, Tuteja N (2017) Reactive oxygen species (ROS) metabolism and signaling in plant-mycorrhizal association under biotic and abiotic stress conditions. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, Switzerland, pp 223–232

    Google Scholar 

  • Nei M (2003) Genome evolution: let’s stick together. Heredity 90:411–412

    Article  CAS  PubMed  Google Scholar 

  • Nerva L, Varese GC, Falk BW, Turina M (2017) Mycoviruses of an endophytic fungus can replicate in plant cells: evolutionary implications. Sci Rep 7:1908. https://doi.org/10.1038/s41598-017-02017-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nongkhlaw F, Mary W, Joshi SR (2017) Microscopic study on colonization and antimicrobial property of endophytic bacteria associated with ethnomedicinal plants of Meghalaya. J Microsc Ultrastructure 5:132–113

    Article  Google Scholar 

  • Osbourn AE, Field B (2009) Operons. Cell Mol Life Sci 66:3755–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen NL, Hundley N (2004) Endophytes-the chemical synthesizers inside plants. Sci Prog 87(pt 2):79–99

    Article  CAS  PubMed  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer, Switzerland. isbn:978-3-319-68957-9. https://link.springer.com/book/10.1007/978-3-319-68957-9

    Book  Google Scholar 

  • Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer, Switzerland. isbn:978-3-319-77386-5. https://www.springer.com/us/book/9783319773858

    Book  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Priyanka B, Monika B, Umang A, Rekha S, Tanisha S, Leela W (2018) Endophytes: an environmental friendly Bacteria for plant growth promotion. Int J Curr Microbiol Appl Sci 7(2):1899–1911. https://doi.org/10.20546/ijcmas.2018.702.229

    Article  CAS  Google Scholar 

  • Rabha AJ, Naglot A, Sharma GD, Gogoi HK, Gupta VK, Shreemali DD, Veer V (2016) Morphological and molecular diversity of endophytic Colletotrichum gloeosporioides from tea plant, Camellia sinensis (L.) O. Kuntze of Assam, India. J Genet Eng Biotechnol 14:181–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray S, Singh V, Singh S, Sarma BK, Singh HB (2016) Biochemical and histochemical analyses revealing endophytic Alcaligenes faecalis mediated suppression of oxidative stress in Abelmoschus esculentus challenged with Sclerotium rolfsii. Plant Physiol Biochem 109(1):430–441

    Article  CAS  PubMed  Google Scholar 

  • Ren G, Zhang H, Lin X, Zhu J, Jia Z (2015a) Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant. Front Microbiol 6:855. https://doi.org/10.3389/fmicb.2015.00855

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren G, Zhu C, Alam MS, Tokida T, Sakai H, Nakamura H, Jia Z (2015b) Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392:27–44

    Article  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME 2:404–416

    Article  Google Scholar 

  • Russell JR, Huang J, Anand P (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77(17):6076–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100(8):4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Scherwinski K, Grosch R, Berg G (2008) Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on non-target microorganisms. FEMS Microbiol Ecol 64(1):106–116. https://doi.org/10.1111/j.1574-6941.2007.00421.x

    Article  CAS  PubMed  Google Scholar 

  • Schutz B (2001) Bioactive fungal metabolites-impact and exploitation. In: International symposium proceedings. University of Wales, British Mycological Society, Swansea, UK, p 20

    Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70(3):1475–1482. https://doi.org/10.1128/AEM.70.3.1475-1482.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Asaf S, Lee I-J (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:24. https://doi.org/10.3389/fpls.2018.00024

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3. Biotech 6:210

    Google Scholar 

  • Shatrupa R, Jyoti S, Rahul SR, Harikesh BS, Surendra S (2018) Endophytic bacteria: an essential requirement of Phyto nutrition. Nutr Food Sci Int J 5(2):555657. https://doi.org/10.19080/NFSIJ.2018.05.555657

    Article  Google Scholar 

  • Shearin ZRC, Filipek M, Desai R, Bickford WA, Kowalski KP, Clay K (2017) Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth. Plant Soil 2017:1–12. https://doi.org/10.1007/s11104-017-3241-x

    Article  CAS  Google Scholar 

  • Shen SY (2013) Bacterial endophytes: exploration of methods and analysis of community variation. MSc thesis, pp 1–183

    Google Scholar 

  • Shimura K, Okada A, Okada K, Jikumaru Y, Ko K, Toyomasu T (2007) Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem 282:34013–34018

    Article  CAS  PubMed  Google Scholar 

  • Sproul D, Gilbert N, Bickmore WA (2005) The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 6:775–781

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Bist V, Srivastava S, Singh PC, Trivedi PK, Asif MH, Chauhan PS, Nautiyal CS (2016) Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani. Front Plant Sci 7:587. https://doi.org/10.3389/fpls.2016.00587

    Article  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 2004(67):257–268

    Article  CAS  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, vol 1, research perspectives. Springer, New Delhi, pp 117–143

    Chapter  Google Scholar 

  • Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54

    Google Scholar 

  • Tellenbach C, Grunig CR, Sieber TN (2010) Suitability of quantitative real-time PCR to estimate the biomass of fungal root endophytes. Appl Environ Microbiol 76(17):5764–5772. https://doi.org/10.1128/AEM.00907-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tétard-Jones C, Edwards R (2016) Potential roles for microbial endophytes in herbicide tolerance in plants. Pest Manag Sci 72(2):203–209. https://doi.org/10.1002/ps.4147

    Article  PubMed  CAS  Google Scholar 

  • Tian BY, Cao Y, Zhang KQ (2015) Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci Rep 5:17087. https://doi.org/10.1038/srep17087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Prasad M, Prasad V, Chauhan PS (2017a) A functional genomic perspective on drought signalling and its cross-talk with various phytohormone-mediated signalling pathways in plants. Curr Genomics. https://doi.org/10.2174/1389202918666170605083319

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017b) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to Phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510. https://doi.org/10.3389/fpls.2017.01510

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483

    Article  PubMed  Google Scholar 

  • Verma VC, Anand S, Ulrichs C (2013) Biogenic gold nanotriangles from Saccharomonospora sp., an endophytic actinomycetes of Azadirachta indica A. Juss. Int Nano Lett 3:21. https://doi.org/10.1186/2228-5326-3-21

    Article  CAS  Google Scholar 

  • Wakelin S, Warren R, Harvey P, Ryder M (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Weilharter A, Mitter B, Shin MV, Chain PS, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JF, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138(4):440–446

    Article  CAS  PubMed  Google Scholar 

  • Winding A, Binnerup SJ, Pritchard H (2004) Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol Ecol 47(2):129–141. https://doi.org/10.1016/S0168-6496(03)00261-7

    Article  CAS  PubMed  Google Scholar 

  • Xin G, Zhang G, Kang JW, Staley JT, Doty SL (2009) A diazotrophic, indole-3-acetic acid- producing endophyte from wild cottonwood. Biol Fertil Soils 45(6):669–674

    Article  CAS  Google Scholar 

  • Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, Huang J, Yi X (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci U S A 107(18):8387–8392. https://doi.org/10.1073/pnas.0913535107

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Li J, Qi G, Wen K, Lu J, Zhao V (2011) Insecticidal effect of recombinant endophytic bacterium containing Pinellia ternata agglutinin against white backed plant hopper, Sogatella furcifera. Crop Prot 30(11):1478–1484

    Article  Google Scholar 

  • Zhao X, Qi G, Zhang X, Lan N, Ma X (2010) Controlling sap-sucking insect pests with recombinant endophytes expressing plant lectin. Nature Preceding’s. 21, article 21

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Biotechnology (DBT), New Delhi, India, The World Academy of Science (TWAS) for TWAS-DBT post-doctoral given Dr. Adetunji. FR number: 3240293141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adetunji, C.O., Kumar, D., Raina, M., Arogundade, O., Sarin, N.B. (2019). Endophytic Microorganisms as Biological Control Agents for Plant Pathogens: A Panacea for Sustainable Agriculture. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Biotic Interactions . Springer, Cham. https://doi.org/10.1007/978-3-030-26657-8_1

Download citation

Publish with us

Policies and ethics