Skip to main content

Simulation and Ureteroscopy (URS)

  • Chapter
  • First Online:
Ureteroscopy

Abstract

Surgical training has evolved considerably since the time of Halsted, with the “see one, do one, teach one” approach now replaced with graduated responsibility. Simulation has grown to play an increasingly important role in this process. The endourologic skill of ureteroscopy has been a particular focus of simulator development. Simulation platforms based on human cadavers, animal models, benchtop models, and virtual reality have all demonstrated high value and educational promise. This chapter reviews the concepts and terminology necessary to understand a simulator’s assessment, as well as the existing literature on simulation in ureteroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAD:

Canadian dollar

CREST:

Center for Research in Education and Simulation Technologies

C-SATS:

Crowd-Sourced Assessment of Technical Skills

FFC:

Fresh-frozen cadaver

OSATS:

Objective Structured Assessment of Technical Skills

TeamSTEPPS :

Team Strategies and Tools to Enhance Performance and Patient Safety

TEC:

Thiel-embalmed cadaver

VR:

Virtual reality

References

  1. Reznick RK, MacRae H. Teaching surgical skills – changes in the wind. N Engl J Med. 2006;355(25):2664–9.

    CAS  PubMed  Google Scholar 

  2. Chikwe J, de Souza AC, Pepper JR. No time to train the surgeons. BMJ. 2004;328(7437):418–9.

    PubMed  PubMed Central  Google Scholar 

  3. Quirke K, Aydin A, Brunckhorst O, et al. Learning curves in urolithiasis surgery: a systematic review. J Endourol. 2018;32(11):1008–20.

    PubMed  Google Scholar 

  4. Ahmed K, Patel S, Aydin A, et al. European Association of Urology Section of Urolithiasis (EULIS) consensus statement on simulation, training, and assessment in urolithiasis. Eur Urol Focus. 2018l;4(4):614–20. https://doi.org/10.1016/j.euf.2017.03.006. Epub 2017 Mar 31.

  5. Cambridge Dictionary.

    Google Scholar 

  6. Talbot TB. Balancing physiology, anatomy and immersion: how much biological fidelity is necessary in a medical simulation? Mil Med. 2013;178(10S):28–36.

    PubMed  Google Scholar 

  7. Volante M, Babu SV, Chaturvedi H, et al. Effects of virtual human appearance fidelity on emotion contagion in affective inter-personal simulations. IEEE Trans Vis Comput Graph. 2016;22(4):1326–35.

    PubMed  Google Scholar 

  8. McDougall EM. Validation of surgical simulators. J Endourol. 2007;21(3):244–7.

    PubMed  Google Scholar 

  9. American Educational Research Association, American Psychological Association, and National Council on Measurement in Education. Standards for educational and psychological testing. Washington, DC: American Educational Research Association; 2014.

    Google Scholar 

  10. Noureldin YA, Sweet RM. A call for a shift in theory and terminology for validation studies in urologic education. J Urol. 2017;2017:3–6.

    Google Scholar 

  11. Cook DA, Zendejas B, Hamstra SJ, Hatala R, Brydges R. What counts as validity evidence? Examples and prevalence in a systematic review of simulation-based assessment. Adv Health Sci Educ Theory Pract. 2014;19(2):233–50.

    PubMed  Google Scholar 

  12. Anastakis DJ, Regehr G, Reznick RK, et al. Assessment of technical skills transfer from the bench training model to the human model. Am J Surg. 1999;177(2):167–70.

    CAS  PubMed  Google Scholar 

  13. Ahmed K, Aydin A, Dasgupta P, Khan MS, McCabe JE. A novel cadaveric simulation program in urology. J Surg Educ. 2015;72(4):556–65.

    PubMed  Google Scholar 

  14. Huri E, Skolarikos A, Tatar İ, et al. Simulation of RIRS in soft cadavers: a novel training model by the Cadaveric Research On Endourology Training (CRET) Study Group. World J Urol. 2016;34(5):741–6.

    PubMed  Google Scholar 

  15. Mains E, Tang B, Golabek T, et al. Ureterorenoscopy training on cadavers embalmed by Thiel’s method: simulation or a further step towards reality? Initial report. Cent Eur J Urol. 2017;70(1):81–7.

    Google Scholar 

  16. Pereira-Sampaio MA, Favorito LA, Sampaio FJB. Pig kidney: anatomical relationships between the intrarenal arteries and the kidney collecting system. Applied study for urological research and surgical training. J Urol. 2004;172(5 I):2077–81.

    PubMed  Google Scholar 

  17. Soria F, Morcillo E, Serrano A, et al. Development and validation of a novel skills training model for retrograde intrarenal surgery. J Endourol. 2015;29(11):1276–81.

    PubMed  Google Scholar 

  18. Strohmaier WL, Giese A. Porcine urinary tract as a training model for ureteroscopy. Urol Int. 2001;66(1):30–2.

    CAS  PubMed  Google Scholar 

  19. Hu D, Liu T, Wang X. Flexible ureteroscopy training for surgeons using isolated porcine kidneys in vitro endourology and technology. BMC Urol. 2015;15(1):1–4.

    Google Scholar 

  20. Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. A novel approach to endourological training: training at the Surgical Skills Center. J Urol. 2001;166(4):1261–6.

    CAS  PubMed  Google Scholar 

  21. Brehmer M, Tolley DA. Validation of a bench model for endoscopic surgery in the upper urinary tract. Eur Urol. 2002;42(2):175–80.

    PubMed  Google Scholar 

  22. Brehmer M, Swartz R. Training on bench models improves dexterity in ureteroscopy. Eur Urol. 2005;48(3):458–63.

    PubMed  Google Scholar 

  23. Kishore TA, Pedro RN, Monga M, Sweet RM. Assessment of validity of an OSATS for cystoscopic and ureteroscopic cognitive and psychomotor skills. J Endourol. 2008;22(12):2707–12.

    PubMed  Google Scholar 

  24. Argun OB, Chrouser K, Chauhan S, et al. Multi-institutional validation of an OSATS for the assessment of cystoscopic and ureteroscopic skills. J Urol. 2015;194(4):1098–105.

    PubMed  Google Scholar 

  25. White MA, DeHaan AP, Stephens DD, Maes AA, Maatman TJ. Validation of a high fidelity adult ureteroscopy and renoscopy simulator. J Urol. 2010;183(2):673–7.

    PubMed  Google Scholar 

  26. Adams F, Qiu T, Mark A, et al. Soft 3D-printed phantom of the human kidney with collecting system. Ann Biomed Eng. 2017;45(4):963–72.

    PubMed  Google Scholar 

  27. Villa L, Somani BK, Sener TE, et al. Comprehensive flexible ureteroscopy (FURS) simulator for training in endourology: the k-box model. Cent Eur J Urol. 2016;69(1):118–20.

    Google Scholar 

  28. Villa L, Şener TE, Somani BK, et al. Initial content validation results of a new simulation model for flexible ureteroscopy: the key-box. J Endourol. 2017;31(1):72–7.

    PubMed  Google Scholar 

  29. Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. The effect of bench model fidelity on endourological skills. J Urol. 2002;167(March):1243–7.

    PubMed  Google Scholar 

  30. Blankstein U, Lantz AG, John D’A, Honey R, Pace KT, Ordon M, Lee JY. Simulation-based flexible ureteroscopy training using a novel ureteroscopy part-task trainer. J Can Urol Assoc. 2015;9:331–5.

    Google Scholar 

  31. Michel MS, Knoll T, Köhrmann KU, Alken P. The URO Mentor: development and evaluation of a new computer-based interactive training system for virtual life-like simulation of diagnostic and therapeutic endourological procedures. BJU Int. 2002;89(3):174–7.

    CAS  PubMed  Google Scholar 

  32. Watterson JD, Beiko DT, Kuan JK, Denstedt JD. A randomized, prospective blinded study validating the acquisition of ureteroscopy skills using a computer based virtual reality endourological simulator. J Urol. 2002;168(5):1928–32.

    PubMed  Google Scholar 

  33. Wilhelm DM, Ogan K, Roehrborn CG, Cadeddu JA, Pearle MS. Assessment of basic endoscopic performance using a virtual reality simulator. J Am Coll Surg. 2002;195(5):675–81.

    PubMed  Google Scholar 

  34. Jacomides L, Ogan K, Cadeddu JA, Pearle MS. Use of a virtual reality simulator for ureteroscopy training. J Urol. 2004;171(1):320–3.

    PubMed  Google Scholar 

  35. Ogan K, Jacomides L, Shulman MJ, Roehrborn CG, Cadeddu JA, Pearle MS. Virtual ureteroscopy predicts ureteroscopic proficiency of medical students on a cadaver. J Urol. 2004;172(2):667–71.

    PubMed  Google Scholar 

  36. Knoll T, Trojan L, Haecker A, Alken P, Michel MS. Validation of computer-based training in ureterorenoscopy. BJU Int. 2005;95(9):1276–9.

    PubMed  Google Scholar 

  37. Dolmans VEMG, Schout BMA, de Beer NAM, Bemelmans BLH, Scherpbier AJJA, Hendrikx AJM. The virtual reality endourologic simulator is realistic and useful for educational purposes. J Endourol. 2009;23(7):1175–81.

    PubMed  Google Scholar 

  38. Mishra S, Sharma R, Kumar A, Ganatra P, Sabnis RB, Desai MR. Comparative performance of high-fidelity training models for flexible ureteroscopy: are all models effective? Indian J Urol. 2011;27(4):451–6.

    PubMed  PubMed Central  Google Scholar 

  39. Chou DS, Abdelshehid C, Clayman RV, McDougall EM. Comparison of results of virtual-reality simulator and training model for basic ureteroscopy training. J Endourol. 2006;20(4):266–71.

    PubMed  Google Scholar 

  40. Matsumoto ED, Pace KT, Honey RJDA. Virtual reality ureteroscopy simulator as a valid tool for assessing endourological skills. Int J Urol. 2006;13(7):896–901.

    PubMed  Google Scholar 

  41. Dai JC, Lendvay TS, Sorensen MD. Crowdsourcing in surgical skills acquisition: a developing technology in surgical education. J Grad Med Educ. 2017;9(6):697–705. https://doi.org/10.4300/JGME-D-17-00322.1. Review.

  42. Conti SL, Brubaker W, Chung BI, et al. Crowd sourced assessment of ureteroscopy with laser lithotripsy video feed does not correlate with trainee experience. J Endourol. 2018;33(1):end.2018.0534.

    Google Scholar 

  43. James J. A new, evidence based estimate of patient harms associated with hospital care. J Patient Saf. 2013;9(3):122–8.

    PubMed  Google Scholar 

  44. Brunckhorst O, Shahid S, Aydin A, et al. Simulation-based ureteroscopy skills training curriculum with integration of technical and non-technical skills: a randomized controlled trial. Surg Endosc. 2015;29(9):2728–35.

    PubMed  Google Scholar 

  45. Weld LR, Stringer MT, Ebertowski JS, et al. TeamSTEPPS improves operating room efficiency and patient safety. Am J Med Qual. 2016;31(5):408–14.

    PubMed  Google Scholar 

  46. de Vries AH, Schout BMA, van Merriënboer JJG, et al. High educational impact of a national simulation-based urological curriculum including technical and non-technical skills. Surg Endosc Other Interv Tech. 2017;31(2):928–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Sweet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raskolnikov, D., Chen, T., Sweet, R.M. (2020). Simulation and Ureteroscopy (URS). In: F. Schwartz, B., D. Denstedt, J. (eds) Ureteroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-26649-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26649-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26648-6

  • Online ISBN: 978-3-030-26649-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics