Skip to main content

Linear vs. Symbolic Regression for Adaptive Parameter Setting in Manufacturing Processes

  • Conference paper
  • First Online:
Book cover Data Management Technologies and Applications (DATA 2018)

Abstract

Product and process quality is playing an increasingly important role in the competitive success of manufacturing companies. To ensure a high quality level of the produced parts, the appropriate selection of parameters in manufacturing processes plays in important role. Traditional approaches for parameter setting rely on rule-based schemes, expertise and domain knowledge of highly skilled workers or trial and error. Automated and real-time adjustment of critical process parameters, based on the individual properties of a part and its previous production conditions, have the potential to reduce scrap and increase the quality. Different machine learning methods can be applied for generating parameter estimation models based on experimental data. In this paper, we present a comparison of linear and symbolic regression methods for an adaptive parameter setting approach. Based on comprehensive real-world data, collected in a long-term study, multiple models are generated, evaluated and compared with regard to their applicability in the studied approach for parameter setting in manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming. Modern Concepts and Practical Applications. Numerical Insights, vol. 6. CRC Press, Boca Raton (2009)

    Google Scholar 

  2. Affenzeller, M., Winkler, S.M., Kronberger, G., Kommenda, M., Burlacu, B., Wagner, S.: Gaining deeper insights in symbolic regression. In: Riolo, R., Moore, Jason H., Kotanchek, M. (eds.) Genetic Programming Theory and Practice XI. GEC, pp. 175–190. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0375-7_10

    Chapter  Google Scholar 

  3. Choudhary, A.K., Harding, J.A., Tiwari, M.K.: Data mining in manufacturing. A review based on the kind of knowledge. J. Intell. Manuf. 20(5), 501–521 (2009). https://doi.org/10.1007/s10845-008-0145-x

    Article  Google Scholar 

  4. Collins, P.C., et al.: Progress toward an integration of process–structure–property–performance models for “Three-Dimensional (3-D) Printing” of titanium alloys. JOM 66(7), 1299–1309 (2014). https://doi.org/10.1007/s11837-014-1007-y

    Article  Google Scholar 

  5. Cook, D.F., Ragsdale, C.T., Major, R.L.: Combining a neural network with a genetic algorithm for process parameter optimization. Eng. Appl. Artif. Intell. 13(4), 391–396 (2000). https://doi.org/10.1016/S0952-1976(00)00021-X

    Article  Google Scholar 

  6. DIN EN ISO 9001:2015: Quality management systems - Fundamentals and vocabulary (ISO 9000:2015) (2015)

    Google Scholar 

  7. Ding, D., et al.: Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part. Comput. Aided Des. 73, 66–75 (2016). https://doi.org/10.1016/j.cad.2015.12.003

    Article  Google Scholar 

  8. Gustafson, S., Burke, E.K., Krasnogor, N.: On improving genetic programming for symbolic regression. In: The 2005 IEEE Congress on Evolutionary Computation. IEEE CEC 2005, Edinburgh, Scotland, UK, 02–05 September 2005, pp. 912–919. IEEE, Piscataway (2005). https://doi.org/10.1109/cec.2005.1554780

  9. Guyon, I.: Feature Extraction. Foundations and Applications. Studies in Fuzziness and Soft Computing, vol. 207. Springer, New York (2006). https://doi.org/10.1007/978-3-540-35488-8

    Book  Google Scholar 

  10. Hasan, K., Babur, O., Tuncay, E.: Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm. J. Mater. Process. Technol. 169(2), 314–319 (2005). https://doi.org/10.1016/j.jmatprotec.2005.03.013

    Article  Google Scholar 

  11. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Networks 4(2), 251–257 (1991). https://doi.org/10.1016/0893-6080(91)90009-T

    Article  MathSciNet  Google Scholar 

  12. ISO 286-1:2010: Geometrical product specifications (GPS)—ISO code system for tolerances on linear sizes (2010)

    Google Scholar 

  13. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: With Applications in R. STS, vol. 103. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  14. Kommenda, M., Kronberger, G., Winkler, S., Affenzeller, M., Wagner, S.: Effects of constant optimization by nonlinear least squares minimization in symbolic regression. ACM (2013). http://dl.acm.org/ft_gateway.cfm?id=2482691&type=pdf

  15. Kommenda, M., Burlacu, B., Holecek, R., Gebeshuber, A., Affenzeller, M.: Heat treatment process parameter estimation using heuristic optimization algorithms. In: Affenzeller, M., Bruzzone, A.G., Jimenez, E., Longo, F., Merkuryev, Y., Zhang, L. (eds.) Proceedings of the European Modeling and Simulation Symposium, pp. 222–227 (2015)

    Google Scholar 

  16. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992). http://mitpress.mit.edu/books/genetic-programming

  17. Miller, A.J.: Subset selection in regression. Monographs on Statistics and Applied Probability, vol. 95, 2nd edn. Chapman & Hall/CRC, Boca Raton (2002)

    Book  Google Scholar 

  18. Murtaugh, P.A.: Methods of variable selection in regression modeling. Commun. Stat. Simul. Comput. 27(3), 711–734 (2010). https://doi.org/10.1080/03610919808813505

    Article  MATH  Google Scholar 

  19. Ozcelik, B., Erzurumlu, T.: Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. J. Mater. Process. Technol. 171(3), 437–445 (2006). https://doi.org/10.1016/j.jmatprotec.2005.04.120

    Article  Google Scholar 

  20. Pawar, P.J., Rao, R.V.: Parameter optimization of machining processes using teaching–learning-based optimization algorithm. Int. J. Adv. Manuf. Technol. 67(5), 995–1006 (2013). https://doi.org/10.1007/s00170-012-4524-2

    Article  Google Scholar 

  21. Robinson, C.J., Malhotra, M.K.: Defining the concept of supply chain quality management and its relevance to academic and industrial practice. Int. J. Prod. Econ. 96(3), 315–337 (2005). https://doi.org/10.1016/j.ijpe.2004.06.055

    Article  Google Scholar 

  22. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science (New York, N.Y.) 324(5923), 81–85 (2009). https://doi.org/10.1126/science.1165893

    Article  Google Scholar 

  23. Shen, C., Wang, L., Li, Q.: Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. J. Mater. Process. Technol. 183(2), 412–418 (2007). https://doi.org/10.1016/j.jmatprotec.2006.10.036

    Article  Google Scholar 

  24. Strasser, S., Tripathi, S., Kerschbaumer, R.: An approach for adaptive parameter setting in manufacturing processes. In: Proceedings of the 7th International Conference on Data Science, Technology and Applications, Porto, Portugal, pp. 24–32. SCITEPRESS - Science and Technology Publications (2018). https://doi.org/10.5220/0006894600240032

  25. Venkata Rao, R., Kalyankar, V.D.: Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm. Scientia Iranica 20(3), 967–974 (2013). https://doi.org/10.1016/j.scient.2013.01.002

    Article  Google Scholar 

  26. Wagner, S., et al.: Architecture and design of the HeuristicLab optimization environment. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence. Topics in Intelligent Engineering and Informatics, vol. 6, pp. 197–261. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-01436-4_10

    Chapter  Google Scholar 

  27. Wuest, T., Klein, D., Thoben, K.-D.: State of steel products in industrial production processes. Procedia Eng. 10, 2220–2225 (2011). https://doi.org/10.1016/j.proeng.2011.04.367

    Article  Google Scholar 

  28. Wuest, T., Irgens, C., Thoben, K.-D.: An approach to monitoring quality in manufacturing using supervised machine learning on product state data. J. Intell. Manuf. 25(5), 1167–1180 (2014). https://doi.org/10.1007/s10845-013-0761-y

    Article  Google Scholar 

  29. Xu, Y., Zhang, Q., Zhang, W., Zhang, P.: Optimization of injection molding process parameters to improve the mechanical performance of polymer product against impact. Int. J. Adv. Manuf. Technol. 76(9), 2199–2208 (2015). https://doi.org/10.1007/s00170-014-6434-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support with the projects ADAPT and BAPDEC, which are funded by the country of Upper Austria in their program “Innovative Upper Austria 2020” and the project “Smart Factory Lab”, which is funded by the European Fund for regional development (EFRE) and the country of Upper Austria as part of the program “Investing in Growth and Jobs 2014–2020”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Strasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Strasser, S., Zenisek, J., Tripathi, S., Schimpelsberger, L., Jodlbauer, H. (2019). Linear vs. Symbolic Regression for Adaptive Parameter Setting in Manufacturing Processes. In: Quix, C., Bernardino, J. (eds) Data Management Technologies and Applications. DATA 2018. Communications in Computer and Information Science, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-26636-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26636-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26635-6

  • Online ISBN: 978-3-030-26636-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics