Skip to main content

A Comprehensive Prediction Approach for Hardware Asset Management

  • Conference paper
  • First Online:
Data Management Technologies and Applications (DATA 2018)

Abstract

One of the main tasks in hardware asset management is to predict types and amounts of hardware assets needed, firstly, for component renewals in installed systems due to failures and, secondly, for new components needed for future systems. For systems with a long lifetime, like railway stations or power plants, prediction periods range up to ten years and wrong asset estimations may cause serious cost issues. In this paper, we present a prediction approach combining two complementary methods: The first method is based on learning a well-fitted statistical model from installed systems to predict assets needed for planned systems. Because the resulting regression models need to be robust w.r.t. anomalous data, we analyzed the performance of two different regression algorithms – Partial Least Square Regression and Sparse Partial Robust M-Regression – in terms of interpretability and prediction accuracy. The second method combines these regression models with a stochastic model to estimate the number of asset replacements needed for existing and planned systems in the future. Both methods were validated by experiments in the domain of rail automation.

This work is funded by the Austrian Research Promotion Agency (FFG) under grant 852658 (CODA).

Alexandra Mazak is affiliated with the Christian Doppler Laboratory on Model-Integrated Smart Production at TU Wien.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please note, that in this article we use the term “asset” in the sense of physical components such as hardware modules or computers but not in the sense of financial instruments.

  2. 2.

    www.r-project.org.

  3. 3.

    http://mevik.net/work/software/pls.html.

  4. 4.

    Implemented with the sprm package in R - https://cran.r-project.org/web/packages/sprm/.

  5. 5.

    A detailed differentiation of MTBF and MTTF (Mean Time To Failure) is beyond the scope of this paper.

  6. 6.

    We use a simple representation of time: years started from some absolute zero time point. This simplifies arithmetic operations on time variables.

  7. 7.

    A probability mass function (PMF) is the discrete counterpart of a probability distribution function (PDF). A PMF f(n) corresponding to a random variable X is \(\text {Pr}(X=n), n \in \mathbb {N}\).

  8. 8.

    Although the example is based on real-world data, we had to change some numbers, MTBF, and order probabilities in order to not disclose business information. The data are realistic but do not reflect actual business data.

References

  1. Amadi-Echendu, J., et al.: What is engineering asset management? In: Amadi-Echendu, J., Brown, K., Willett, R., Mathew, J. (eds.) Definitions, Concepts and Scope of Engineering Asset Management. Engineering Asset Management Review, vol. 1, pp. 3–16. Springer, London (2010). https://doi.org/10.1007/978-1-84996-178-3_1

    Chapter  Google Scholar 

  2. Bagheri, B., Siegel, D., Zhao, W., Lee, J.: A stochastic asset life prediction method for large fleet datasets in big data environment. In: ASME 2015 International Mechanical Engineering Congress and Exposition, pp. V014T06A010–V014T06A010. American Society of Mechanical Engineers (2015)

    Google Scholar 

  3. Dixon, S.J., et al.: Pattern recognition of gas chromatography mass spectrometry of human volatiles in sweat to distinguish the sex of subjects and determine potential discriminatory marker peaks. Chemom. Intell. Lab. Syst. 87(2), 161–172 (2007)

    Article  Google Scholar 

  4. Filzmoser, P., Liebmann, B., Varmuza, K.: Repeated double cross validation. J. Chemom. 23(4), 160–171 (2009)

    Article  Google Scholar 

  5. Gertsbakh, I.: Reliability Theory: With Applications to Preventive Maintenance. Springer, New York (2013)

    MATH  Google Scholar 

  6. Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  7. Hoffmann, I., Serneels, S., Filzmoser, P., Croux, C.: Sparse partial robust M regression. Chemometr. Intell. Lab. Syst. 149, 50–59 (2015)

    Article  Google Scholar 

  8. Jenab, K., Noori, K., Weinsier, P.D.: Obsolescence management in rail signalling systems: concept and markovian modelling. Int. J. Prod. Qual. Manag. 14(1), 21–35 (2014)

    Google Scholar 

  9. Jennings, C., Wu, D., Terpenny, J.: Forecasting obsolescence risk and product life cycle with machine learning. IEEE Trans. Compon. Packag. Manuf. Technol. 6(9), 1428–1439 (2016)

    Article  Google Scholar 

  10. Klutke, G., Kiessler, P.C., Wortman, M.A.: A critical look at the bathtubcurve. IEEE Trans. Reliab. 52(1), 125–129 (2003). https://doi.org/10.1109/TR.2002.804492

    Article  Google Scholar 

  11. Lee, J., Jin, C., Bagheri, B.: Cyber physical systems for predictive production systems. Prod. Eng. 11(2), 155–165 (2017)

    Article  Google Scholar 

  12. Li, J., Tao, F., Cheng, Y., Zhao, L.: Big data in product lifecycle management. Int. J. Adv. Manuf. Technol. 81(1–4), 667–684 (2015)

    Article  Google Scholar 

  13. Ma, J., Kim, N.: Electronic part obsolescence forecasting based on time series modeling. Int. J. Precis. Eng. Manuf. 18(5), 771–777 (2017)

    Article  Google Scholar 

  14. Maronna, R., Martin, R.D., Yohai, V.: Robust Statistics, vol. 1. Wiley, Chichester (2006). ISBN

    Book  Google Scholar 

  15. Mooi, E., Sarstedt, M., Mooi-Reci, I.: Market Research. STBE. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5218-7

    Book  Google Scholar 

  16. Mosallam, A., Medjaher, K., Zerhouni, N.: Component based data-driven prognostics for complex systems: methodology and applications. In: 2015 First International Conference on Reliability Systems Engineering (ICRSE), pp. 1–7. IEEE (2015)

    Google Scholar 

  17. Mosallam, A., Medjaher, K., Zerhouni, N.: Data-driven prognostic method based on bayesian approaches for direct remaining useful life prediction. J. Intell. Manuf. 27(5), 1037–1048 (2016)

    Article  Google Scholar 

  18. Randomservices.org: Renewal processes (2017). http://www.randomservices.org/random/renewal/index.html. Accessed 3 Feb 2018

  19. Sandborn, P.: Forecasting technology and part obsolescence. proceedings of the institution of mechanical engineers, part B: J. Eng. Manuf. 231(13), 2251–2260 (2017)

    Article  Google Scholar 

  20. Sandborn, P., Prabhakar, V., Ahmad, O.: Forecasting electronic part procurement lifetimes to enable the management of DMSMS obsolescence. Microelectron. Reliab. 51(2), 392–399 (2011)

    Article  Google Scholar 

  21. Sandborn, P.A., Mauro, F., Knox, R.: A data mining based approach to electronic part obsolescence forecasting. IEEE Trans. Compon. Packag. Technol. 30(3), 397–401 (2007)

    Article  Google Scholar 

  22. Serneels, S., Croux, C., Filzmoser, P., Van Espen, P.J.: Partial robust m-regression. Chemometr. Intell. Lab. Syst. 79(1–2), 55–64 (2005)

    Article  Google Scholar 

  23. Smit, S., Hoefsloot, H.C., Smilde, A.K.: Statistical data processing in clinical proteomics. J. Chromatogr. B 866(1–2), 77–88 (2008)

    Article  Google Scholar 

  24. Solomon, R., Sandborn, P.A., Pecht, M.G.: Electronic part life cycle concepts and obsolescence forecasting. IEEE Trans. Compon. Packag. Technol. 23(4), 707–717 (2000)

    Article  Google Scholar 

  25. Thaduri, A., Galar, D., Kumar, U.: Railway assets: a potential domain for big data analytics. Procedia Comput. Sci. 53, 457–467 (2015)

    Article  Google Scholar 

  26. Vachtsevanos, G.J., Lewis, F., Hess, A., Wu, B.: Intelligent Fault Diagnosis and Prognosis for Engineering Systems. Wiley, Hoboken (2006)

    Book  Google Scholar 

  27. Wilcox, R.R., Keselman, H.: Modern robust data analysis methods: measures of central tendency. Psychol. Meth. 8(3), 254 (2003)

    Article  Google Scholar 

  28. Wold, H.: Nonlinear Estimation by iterative least squares procedures. In: David, F.N. (Hrsg.) Festschrift for J. Neyman: Research Papers in Statistics, London (1966)

    Google Scholar 

  29. Wold, H.: Model construction and evaluation when theoretical knowledge is scarce: theory and application of partial least squares. In: Kmenta, J., Ramsey, J.B. (eds.) Evaluation of Econometric Models, pp. 47–74. Elsevier, Amsterdam (1980)

    Chapter  Google Scholar 

  30. Wold, S., Sjöström, M., Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 58(2), 109–130 (2001)

    Article  Google Scholar 

  31. Wurl, A., Falkner, A., Haselböck, A., Mazak, A.: Advanced data integration with signifiers: case studies for rail automation. In: Filipe, J., Bernardino, J., Quix, C. (eds.) DATA 2017. CCIS, vol. 814, pp. 87–110. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94809-6_5

    Chapter  Google Scholar 

  32. Wurl, A., Falkner, A., Haselböck, A., Mazak, A.: Using signifiers for data integration in rail automation. In: Proceedings of the 6th International Conference on Data Science, Technology and Applications, vol. 1, pp. 172–179 (2017)

    Google Scholar 

  33. Wurl, A., Falkner, A.A., Haselböck, A., Mazak, A., Sperl, S.: Combining prediction methods for hardware asset management. In: Proceedings of the 7th International Conference on Data Science, Technology and Applications, DATA 2018, Porto, Portugal, pp. 13–23, 26–28 July 2018. https://doi.org/10.5220/0006859100130023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Wurl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wurl, A., Falkner, A., Filzmoser, P., Haselböck, A., Mazak, A., Sperl, S. (2019). A Comprehensive Prediction Approach for Hardware Asset Management. In: Quix, C., Bernardino, J. (eds) Data Management Technologies and Applications. DATA 2018. Communications in Computer and Information Science, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-26636-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26636-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26635-6

  • Online ISBN: 978-3-030-26636-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics