Skip to main content

Evaluation of Iterative Calibration of Vehicle Cameras Using Reference Information from Traffic Signs

  • Conference paper
  • First Online:
Smart Cities, Green Technologies and Intelligent Transport Systems (SMARTGREENS 2018, VEHITS 2018)

Abstract

Intrinsic camera parameters can be estimated by camera calibration using multiple images of a priori known reference points on a test field. In particular during driving, vehicle cameras might be exposed to mechanical and thermal effects, leading to a change of these parameters over time and making iterative camera calibration useful to correct for these changes. As on roads no special test fields are available, reference information has to be extracted from road scene images. In this contribution, a method for iterative calibration of a vehicle camera using references on traffic signs is proposed. The references are obtained from the shape of traffic signs detected in road scene images, exploiting that the shape is known a priori. A test with a road scene image sequence acquired during a test drive in a car park equipped with traffic signs shows no decrease in the standard deviation of the parameters iteratively estimated with the proposed method compared to test field calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ziebinski, A., Cupek, R., Erdogan, H., Waechter, S.: A survey of ADAS technologies for the future perspective of sensor fusion. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9876, pp. 135–146. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45246-3_13

    Chapter  Google Scholar 

  2. Automotive Glazing Academy: ADAS - Automotive Glazing Academy. Website (2018). http://aga.uk.net/wp-content/uploads/2015/11/ADAS.jpg. Accessed 24 May 2018

  3. Mende, R., Rohling, H.: New automotive applications for smart radar systems (2002)

    Google Scholar 

  4. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  5. Fitzgibbon, A.W., Zisserman, A.: Automatic camera recovery for closed or open image sequences. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 311–326. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055675

    Chapter  Google Scholar 

  6. Lemaire, T., Berger, C., Jung, I.K., Lacroix, S.: Vision-based slam: stereo and monocular approaches. Int. J. Comput. Vis. 74, 343 (2007)

    Article  Google Scholar 

  7. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: International Conference on 3D Vision (3DV) 2017 (2017)

    Google Scholar 

  8. Heyden, A., Astrom, K.: Euclidean reconstruction from constant intrinsic parameters. In: Proceedings of 13th International Conference on Pattern Recognition, vol. 1, pp. 339–343 (1996)

    Google Scholar 

  9. Somanath, G., Rohith, M.V., Kambhamettu, C.: Single camera stereo system using prism and mirrors. In: Bebis, G., et al. (eds.) ISVC 2010. LNCS, vol. 6454, pp. 170–181. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17274-8_17

    Chapter  Google Scholar 

  10. Hanel, A., et al.: Metric scale calculation for visual mapping algorithms. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2018)

    Article  Google Scholar 

  11. Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close Range Photogrammetry. Principles, Methods and Applications. Whittles Publishing (2006)

    Google Scholar 

  12. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge Books Online. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  13. Brown, D.C.: Close-range camera calibration. Photogramm. Eng. 37, 855–866 (1971)

    Google Scholar 

  14. El-Hakim, S.: Real-time image metrology with CCD cameras. Photogramm. Eng. Remote. Sens. 52, 1757–1766 (1986)

    Google Scholar 

  15. Fraser, C.S., Shortis, M.R.: Variation of distortion within the photographic field. Photogramm. Eng. Remote. Sens. 58, 851–855 (1992)

    Google Scholar 

  16. Heng, L., Li, B., Pollefeys, M.: CamOdoCal: automatic intrinsic and extrinsic calibration of a rig with multiple generic cameras and odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1793–1800. IEEE (2013)

    Google Scholar 

  17. Friel, M., Savage, D.A., Hughes, C., Ermilios, P.: Online vehicle camera calibration based on road surface texture tracking and geometric properties. Patent (2012)

    Google Scholar 

  18. Hanel, A., Stilla, U.: Structure-from-motion for calibration of a vehicle camera system with non-overlapping fields-of-view in an urban environment. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 42, 181–188 (2017)

    Article  Google Scholar 

  19. Faugeras, O.D., Luong, Q.-T., Maybank, S.J.: Camera self-calibration: theory and experiments. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 321–334. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55426-2_37

    Chapter  Google Scholar 

  20. Thatcham Research and ADAS Repair Group: Code of Practice For the Replacement & Refitting of Automotive Glazing for vehicles fitted with screen mounted Advanced Driver Assistance Systems (ADAS) (2016)

    Google Scholar 

  21. Broggi, A., Bertozzi, M., Fascioli, A.: Self-calibration of a stereo vision system for automotive applications. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, vol. 4, pp. 3698–3703 (2001)

    Google Scholar 

  22. Bellino, M., Holzmann, F., Kolski, S., de Meneses, Y.L., Jacot, J.: Calibration of an embedded camera for driver-assistant systems. In: Proceedings of the 2005 IEEE Intelligent Transportation Systems, 2005, pp. 354–359 (2005)

    Google Scholar 

  23. Ribeiro, A.A.G.A., Dihl, L.L., Jung, C.R.: Automatic camera calibration for driver assistance systems. In: Proceeedings of 13th International Conference on Systems, Signals and Image Processing, pp. 173–176 (2006)

    Google Scholar 

  24. Hanel, A., Hoegner, L., Stilla, U.: Towards the influence of a car windshield on depth calculation with a stereo camera system. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 41, 461–468 (2016)

    Article  Google Scholar 

  25. Hella Gutmann Solutions GmbH: CSC-Tool. Operating Instructions (2016)

    Google Scholar 

  26. Paula, M.D., Jung, C., Silveira, L.D.: Automatic on-the-fly extrinsic camera calibration of onboard vehicular cameras. Expert. Syst. Appl. Int. J. 41, 1997–2007 (2014)

    Article  Google Scholar 

  27. Department of Transport - Ireland: Traffic Signs Manual (2010)

    Google Scholar 

  28. Mobileye Technologies Limited: Mobileye 5 Series — Mobileye. Website (2018). https://www.mobileye.com/en-uk/products/mobileye-5-series/. Accessed 12 June 2018

  29. Pemble, C.A.: Garmin VIRB Ultra 30 Technical Specifications. Website (2017). http://www8.garmin.com/automotive/pdfs/VIRB-Ultra30-specs.pdf. Accessed 29 Jan 2017

  30. Nikon UK Limited: Nikon D5 Spiegelreflexkamera — Profikamera — Technische Daten. Website (2018). https://www.europe-nikon.com/en_GB/product/digital-cameras/slr/professional/d5#tech_specs. Accessed 12 June 2018

  31. Dang, T., Hoffmann, C., Stiller, C.: Continuous stereo self-calibration by camera parameter tracking. IEEE Trans. Image Process. 18, 1536–1550 (2009)

    Article  MathSciNet  Google Scholar 

  32. Smith, M.J., Cope, E.: The effects of temperature variation on single-lens-reflex digital camera calibration parameters. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, vol. XXXVIII, pp. 554–559 (2010)

    Google Scholar 

  33. Luhmann, T., Robson, S., Kyle, S., Boehm, J.: Close-range Photogrammetry and 3D Imaging. De Gruyter Textbook. De Gruyter, Berlin (2013)

    Book  Google Scholar 

  34. Hastedt, H., Ekkel, T., Luhmann, T.: Evaluation of the quality of action cameras with wide-angle lenses in uav photogrammetry. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-1/W4 (2016)

    Article  Google Scholar 

  35. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  36. Wu, Y., Liu, Y., Li, J., Liu, H., Hu, X.: Traffic sign detection based on convolutional neural networks. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2013)

    Google Scholar 

  37. Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., Hu, S.: Traffic-sign detection and classification in the wild. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2110–2118 (2016)

    Google Scholar 

  38. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  39. Comaschi, F., Stuijk, S., Basten, T., Corporaal, H.: RASW: a run-time adaptive sliding window to improve Viola-Jones object detection. In: 2013 Seventh International Conference on Distributed Smart Cameras (ICDSC), pp. 1–6 (2013)

    Google Scholar 

  40. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21, 32–40 (1975)

    Article  MathSciNet  Google Scholar 

  41. Elder, J.: Determining rotations between disc axis and line of sight. Website (2017). http://web.ncf.ca/aa456/scale/ellipse.html. Accessed 29 Oct 2017

  42. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30, 32–46 (1985)

    Article  Google Scholar 

  43. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  44. Soilán, M., Riveiro, B., Martínez-Sánchez, J., Arias, P.: Traffic sign detection in MLS acquired point clouds for geometric and image-based semantic inventory. ISPRS J. Photogramm. Remote. Sens. 114, 92–101 (2016)

    Article  Google Scholar 

  45. Schneider, C.T., Boesemann, W., Godding, R.: AICON 3D systems GmbH (2014)

    Google Scholar 

  46. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332 (2012). Selected Papers from IJCNN 2011

    Article  Google Scholar 

  47. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic signs in real-world images: the German traffic sign detection benchmark. In: International Joint Conference on Neural Networks. Number 1288 (2013)

    Google Scholar 

  48. Hanel, A., Stilla, U.: Iterative calibration of a vehicle camera using traffic signs detected by a convolutional neural network. In: Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems (2018)

    Google Scholar 

  49. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Hanel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hanel, A., Stilla, U. (2019). Evaluation of Iterative Calibration of Vehicle Cameras Using Reference Information from Traffic Signs. In: Donnellan, B., Klein, C., Helfert, M., Gusikhin, O. (eds) Smart Cities, Green Technologies and Intelligent Transport Systems. SMARTGREENS VEHITS 2018 2018. Communications in Computer and Information Science, vol 992. Springer, Cham. https://doi.org/10.1007/978-3-030-26633-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26633-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26632-5

  • Online ISBN: 978-3-030-26633-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics