Skip to main content

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Generally, e-waste contains 3–5% PCBs, which are the most valuable part of WEEE. Structure, material composition, sources, and value of WPCBs are covered in detail in this chapter. Bare and populated WPCB and electronic component chemical compositions are compared. WPCB grades and prices are given along with valuable metal contents. Value chain and economic value of WPCB recycling are explained graphically. PCB types and assembly structure, methods of fastening electronic components on PCBs, and soldering methods and desoldering for electronic component are described elaborately. The effects of e-waste recycling on metal resources are explained. Characterization and amount of wastes from PCB manufacturing processes are clarified.

“The greatest threat to our planet is the belief that someone else will save it.”

–Robert Swan, Author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tatariants M, Yousef S, Sidaraviciute R, Denafas G, Bendikiene R (2017) Characterization of waste printed circuit boards recycled using a dissolution approach and ultrasonic treatment at low temperatures. RSC Adv 7:37729–37738. https://doi.org/10.1039/C7RA07034A

    Article  CAS  Google Scholar 

  2. Yousef S, Tatariants M, Bendikiene R, Defafas G (2017) Mechanical and thermal characterizations of non-metallic components recycled from waste printed circuit boards. Journal of cleaner production 167, 271–280

    Article  CAS  Google Scholar 

  3. Li J, Shrivastava P, Gao Z, Zhang HC (2004) Printed circuit board recycling: a state-of-the art survey. IEEE Trans Electron Packag Manuf 27(1):33–42. https://doi.org/10.1109/TEPM.2004.830501

    Article  CAS  Google Scholar 

  4. http://wedocs.unep.org/bitstream/handle/20.500.11822/8423/-Metal%20Recycling%20Opportunities%2c%20Limits%2c%20Infrastructure-2013Metal_recycling.pdf?sequence=3&isAllowed=y

  5. Ghosh B, Ghosh MK, Parhi P, Mukherjee PS, Mishra BK (2015) Waste printed circuit boards recycling: an extensive assessment of current status. J Clean Prod 94:5–19. https://doi.org/10.1016/j.jclepro.2015.02.024

    Article  CAS  Google Scholar 

  6. Sum EYL (1991) The recovery of metals from electronic scraps. JOM 43(4):53–61

    Article  CAS  Google Scholar 

  7. Tohka A, Lehto H (2005) Mechanical and thermal recycling of waste from electric and electronic equipment. Helsinki University of Technology, Department of Mechanical Eng. Energy Engineering and Environmental Protection Publications, Espoo

    Google Scholar 

  8. Takanori H, Ryuichi A, Youichi M, Minoru N, Yasuhiro T, Takao A (2009) Techniques to separate metal from waste printed circuit boards from discarded personal computers. J Mater Cycles Waste Manage 11:42–54. https://doi.org/10.1007/s10163-008-0218-0

    Article  CAS  Google Scholar 

  9. Jung LB, Bartel JT (1999) Computer take-back and recycling, an economic analysis for used consumer equipment. J Electron Manuf 9:67–77. https://doi.org/10.1142/S0960313199000295

    Article  Google Scholar 

  10. Soare V, Burada M, Dumitrescu DV, Costantian I, Soare V, Popescu ANJ, Carcea Ii Innovation approach for the valorization of useful metals from waste electrical and electronic equipment (WEEE), 2016, IOP conference series. Mater Sci Eng. https://doi.org/10.1088/1757-899X/145(2/022039. http://researchgate.net/publication/304310103

  11. Duan H, Hou K, Li JH, Zhu XD (2011) Examining the technology acceptance for dismantling of waste printed circuit boards in light of recycling and environmental concerns. J Environ Manag 92:392–399. https://doi.org/10.1016/j.jenvman.2010.10.057

    Article  CAS  Google Scholar 

  12. Chancerel P, Meskers CEM, Hagelüken C, Rotter VS (2009) Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment. J Ind Ecol 13:791–810. https://doi.org/10.1111/j.1530-9290.2009.00171.x

    Article  CAS  Google Scholar 

  13. Zhang K, Schoor JL, Zeng EY (2012) E-waste recycling: where does it go from here? Environ Sci Technol 46:10861–10867. https://doi.org/10.1021/es303166s

    Article  CAS  Google Scholar 

  14. Gu F, Summers PA, Widijatmoko SD, Zheng Y, Wu T, Miles NJ, George MW, Hall P (2017) Materials recovery methods for recycling waste mobile phones: a critical review. Waste Manag. (accepted)

    Google Scholar 

  15. Yang C, Li J, Tan Q, Liu L, Dong Q (2017) Green process of metal recycling: Coprocessing waste printed circuit boards and spent tin stripping solution. ACS Sustain Chem Eng 5:3524–3535. https://doi.org/10.1021/acssuschemeng.7b00245

    Article  CAS  Google Scholar 

  16. Hagelüken C (2006) Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery. World Metals-Erzmetall 59(3):152161

    Google Scholar 

  17. Kellner D (2009) Recycling and recovery. In: Hester RE, Harrison RM (eds) Electronic waste management, design, analysis and application. RSC Publishing, Cambridge, pp 91–110

    Google Scholar 

  18. Mesker CEM, Hagelüken C, Van Damme G (2009) TMS 2009 annual meeting & exhibition, San Francisco, California, USA, EPD Congress 2009 Proceedings Ed. by. S.H. Howard, P. Anyalebechi, L. Zhang, pp 1131–1136, ISBN No: 978–0–87339-732-2

    Google Scholar 

  19. Mesquita RA, Silva RAF, Majuste D (2018) Chemical mapping and analysis of electronic components from waste PCB with focus on metal recovery, Process Safety and Environmental Protection, 120, 107–117. https://doi.org/10.1016/j.psep.2018.09.002

    Article  CAS  Google Scholar 

  20. Kaya M (2018) Current WEEE recycling solutions, Chap. 3. In: Veglio F, Birloaga I (eds) Waste electrical and electronic equipment recycling, aqueous recovery methods, pp 33–93. https://doi.org/10.1016/B978-0-08-102057-9.00003-2

    Chapter  Google Scholar 

  21. Veit HM, Diehl TR, Salami AP, Rodrigues JS, Bernardes AM, Tenório JAS (2005) Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap. Waste Manag 25:67–74. https://doi.org/10.1016/j.wasman.2004.09.009

    Article  CAS  Google Scholar 

  22. William JH, Williams PT (2007) Separation and recovery of materials from scrap printed circuit boards. Resources Conservation and Recycling 51:691–709. https://doi.org/10.1016/j.resconrec.2006.11.010

    Article  Google Scholar 

  23. Murugan RV, Bharat S, Deshpande AP, Varughese S, Haridoss P (2008) Milling and separation of the multi-component printed circuit board materials and the analysis of elutriation based on a single particle model. Powder Technol 183:169–176. https://doi.org/10.1016/j.powtec.2007.07.020

    Article  CAS  Google Scholar 

  24. LaDou J (2006) Printed circuit board industry. Int J Hyg Environ Health 209:211–219. https://doi.org/10.1016/j.ijheh.2006.02.001

    Article  CAS  Google Scholar 

  25. Yokoyama S, Iji M (1997) Recycling of printed wiring boards with mounted electronic parts. In: Proceedings of the 1997 IEEE Int. Sym, pp 109–114

    Google Scholar 

  26. Zhou Y, Qiu K (2010) A new technology for recycling materials from waste printed circuit boards. J Hazard Mater 175(1–3):823–828. https://doi.org/10.1016/j.jhazmat.2009.10.083

    Article  CAS  Google Scholar 

  27. Koyanaka S, Ohya H, Lee JC, Iwata H, Endoh S (1999) Impact milling of printed circuit board wastes for resources recycling and evaluation of the liberation using heavy medium separation. J Soc Powder Technol Jpn 36:479–483. https://doi.org/10.4164/sptj.36.479

    Article  CAS  Google Scholar 

  28. Vidyadhar A, Das A (2013) Enrichment implications of froth flotation kinetics in the separation and recovery of metal values from PCBs. Sep Purif Technol 118:305–312. https://doi.org/10.1016/j.seppur.2013.07.027

    Article  CAS  Google Scholar 

  29. Yamane LH, Moraes VT, Espinosa DCR (2011) Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers. Waste Manag 31:2553–2558. https://doi.org/10.1016/j.wasman.2011.07.006

    Article  CAS  Google Scholar 

  30. Guo J, Guo J, Xu Z (2009) Recycling of non-metallic fractions from waste printed circuit boards: a review. J Hazard Mater 168(2–3):567–590. https://doi.org/10.1016/j.jhazmat.2009.02.104

    Article  CAS  Google Scholar 

  31. http://www.downtoearth.org.in/coverage/wasted-e-waste-40440

  32. https://pubs.acs.org/cen/news/89/i22/8922notw4.html

  33. Hagelüken C, Corti CW (2010) Recycling of gold from electronics: cost effective use through “design for recycling”. Gold Bull 43:209. https://doi.org/10.1007/BF03214988

    Article  Google Scholar 

  34. www.umicore.com

  35. http://www.ewasteguide.info/files /UNEP_2009_eW2R.PDF

  36. Marques AC, Cabrera JM, Malfatt CF (2013) Printed circuit boards: a review on the perspective of sustainability. J Environ Manag 131:298–306. https://doi.org/10.1016/j.jenvman.2013.10.003

    Article  CAS  Google Scholar 

  37. Khaliq A, Rhamdhani MA, Brooks G, Masood S (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources 3(1):152–179. https://doi.org/10.3390/resources3010152

    Article  Google Scholar 

  38. Guo F (2007) Composite lead-free electronic solders. J Mater Sci Mater Electron 18:129–145. https://doi.org/10.1007/s10854-006-9019-1

    Article  CAS  Google Scholar 

  39. https://en.wikipedia.org/wiki/Solder

  40. Tu K, Zeng K (2001) Tin-lead (SnPb) solder reaction in flip chip technology. Mater Sci Eng 34:1–58. https://doi.org/10.1016/S0927-796X(01)00029-8

    Article  Google Scholar 

  41. Fields RJ, Low SR, Lucey GK et al (1991) Physical and mechanical properties of intermetallic compounds commonly found in solder joints. In: Cieslak MJ (ed) The metal science of joining. TMS, Warrendale, pp 165–174

    Google Scholar 

  42. Prakash KH, Sritharan T (2004) Tensile fracture of tin-lead solder joints in copper. Mater Sci Eng A 379:277–285. https://doi.org/10.1016/j.msea.2004.02.049

    Article  CAS  Google Scholar 

  43. Flandinet L, Tedjar F, Ghetta V, Fouletier J (2012) Metals recovering from waste printed circuit boards (WPCBs) using molten salts. J Hazard Mater 213–214:485–490. https://doi.org/10.1016/j.jhazmat.2012.02.037

    Article  CAS  Google Scholar 

  44. Kaya M (2016) Recovery of metals from electronic waste by physical and chemical recycling processes. Int J Chem Nucl Mater Metall Eng 10. scholar.waset.org/1307-6892/10003863

  45. https://www.epa.gov/sites/production/files/2014-05/documents/handout-10-circuitboards.pdf

  46. Huang K, Guo J, Xu Z (2009) Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. J Hazard Mater 164:399–406. https://doi.org/10.1016/j.jhazmat.2008.08.051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaya, M. (2019). Printed Circuit Boards (PCBs). In: Electronic Waste and Printed Circuit Board Recycling Technologies. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-26593-9_2

Download citation

Publish with us

Policies and ethics