Skip to main content

Systemic Approach for the Design of Renewable Energy Supply Chain Generated from Biomass

  • Chapter
  • First Online:
Techniques, Tools and Methodologies Applied to Global Supply Chain Ecosystems

Abstract

The world’s demand for energy increases as population keeps growing and industrialization intensifies. Renewable power generation (RPG) has become one of the most researched and developed areas in the last years, since traditional energy generation methods produce large amounts of carbon dioxide (CO2) and have an adverse effect on the environment. Renewable energy alternatives—e.g. solar energy, wind power, geothermal power, hydroelectric energy, and especially biomass (i.e. organic waste material)—are more environmentally friendly. Moreover, if used appropriately, biomass can ensure a stable and uninterrupted power supply, unlike solar energy—which depends on solar radiation—or wind power—which depends on wind speed. Also, waste materials derived from products such as sugar, coffee, juice, cosmetics, and alcoholic beverages can be used as sources of energy thanks to the amount of organic mass that they contain. In this work, we propose the design of a biomass-based logistics structure or supply chain for power generation. To this end, we follow the System Dynamics (SD) method and consider the key echelons of procurement, production, and distribution. Similarly, we create a causal diagram to identify the variables that are the key to supply chain development, as well as those that generate disruption in the supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alves, R.C., Rodrigues, F., Nunes, M.A., Vinha, A.F., Oliveira, M.B.: State of the art in coffee processing by-products. In: Handbook of Coffee Processing By-Products. Sustainable Applications, pp. 1–3. Elsevier, Portugal (2017)

    Google Scholar 

  2. Alves, R., Oliveira, M., Casal, S.: Current Topics on Food Authentication. Transworld Research Network, Kerala (2011)

    Google Scholar 

  3. Azadeh, A., Vafa, H.A.: Biodiesel supply chain optimization via a hybrid system dynamics mathematical programming approach. Renew. Energy 383–403 (2016). https://doi.org/10.1016/j.renene.2016.02.070

    Article  Google Scholar 

  4. Ballesteros, L., Teixeira, J., Mussatto, S.: Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol. 7(12), 3493–3503 (2014). https://doi.org/10.1007/s11947-014-1349-z

    Article  Google Scholar 

  5. Bantz, S., Deaton, M.: Understanding U.S. biodiesel industry growth using system dynamics modeling. In: Systems and Information Engineering Design Symposium, pp. 156–161. IEEE (2006). https://doi.org/10.1109/sieds.2006.278731

  6. Bentsen, N.S., Felby, C.: Biomass for energy in the European Union—a review of bioenergy resource assessments. Biotechnol. Biofuels 5, 5–25 (2012). https://doi.org/10.1186/1754-6834-5-25

    Article  Google Scholar 

  7. Bertone, E., Venturello, A., Giraudo, A., Pellegrino, G., Geobaldo, F.: Simultaneous determination by NIR spectroscopy of the roasting degree and Arabica/Robusta ratio in roasted and ground coffee. Food Control 59, 683–689 (2016). https://doi.org/10.1016/j.foodcont.2015.06.055

    Article  Google Scholar 

  8. Black, M., Sadhukhan, J., Kenneth, D., Geoffrey, D., Murphy, R.: Developing database criteria for the assessment of biomass supply chains for biorefinery development. Chem. Eng. Res. Des. 107, 253–262 (2016). https://doi.org/10.1016/j.cherd.2015.10.046

    Article  Google Scholar 

  9. Bridgwater, A., Toft, A., Brammer, J.: A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew. Sustain. Energy Rev. 6(3), 181–246 (2002). https://doi.org/10.1016/S1364-0321(01)00010-7

    Article  Google Scholar 

  10. Bush, B., Duffy, M., Sandor, D.: Using system dynamics to model the transition to biofuels in the United States preprint. In: IEEE International Conference (2008)

    Google Scholar 

  11. Clark, C.M., Lin, Y., Bierwagen, B.G., Eaton, L.M., Langholtz, M.H., Morefield, P.E., Ridley, C.E., Vimmerstedt, L., Peterson, S., Bush, B.W.: Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the conservation reserve program. Environ. Res. Lett. 8 (2013). https://doi.org/10.1186/1754-6834-5-25

    Article  Google Scholar 

  12. Connolly, D., Lund, H., Mathiesen, B.: Smart energy Europe: the technica land economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 1634–1653 (2016). https://doi.org/10.1016/j.rser.2016.02.025

    Article  Google Scholar 

  13. Cutz, L., Haro, P., Santana, D., Johnsson, F.: Assessment of biomass energy sources and technologies: the case of Central America. Renew. Sustain. Energy Rev. 58, 1411–1431 (2016). https://doi.org/10.1016/j.rser.2015.12.322

    Article  Google Scholar 

  14. Dias, M., Melo, M., Schwan, R., Silva, C.: A new alternative use for coffee pulp from semi-dry process to β-glucosidase production by Bacillus subtilis. Lett. Apply Microbil. 61(6), 588–595 (2015). https://doi.org/10.1111/lam.12498

    Article  Google Scholar 

  15. DNV GL: Energy transition Outlook 2018 (2018). Obtenido de https://elperiodicodelaenergia.com/la-energia-en-el-mundo-en-2050-50-renovables-y-nuclear-50-combustibles-fosiles/

  16. DOF: Diario Oficial de la Federación. Decreto para el aprovechamiento de energías renovables. México (2014)

    Google Scholar 

  17. Esquivel, P., Jiménez, V.: Functional properties of coffee and coffee by-products. Food Res. Int. 46(2), 488–495 (2012). https://doi.org/10.1016/j.foodres.2011.05.028

    Article  Google Scholar 

  18. Ferrão, J.: O Café, A Bebida Negra Dos Sonhos Claros. Chaves Ferreira-Publicações, Lisboa (2009)

    Google Scholar 

  19. Franca, A.S., Oliveira, L.S.: Coffee and its by-products as sources of bioactive compounds. In: Coffee Production, Consumption and Health Benefits, pp. 1–28. NOVA Publishers, New York (2015). ISBN: 978-1-63484-714-8

    Google Scholar 

  20. Franco, C., Ochoa, M., Flórez, A.: System dynamics approach to biofuels in Colombia. In: Proceedings of 27th International Conference of the System Dynamics, pp. 1–11 (2009)

    Google Scholar 

  21. Funchs, U.: Systems dynamics modeling in science and engineering. In: Sistemas dinámicos en la Universidad de Puerto Rico. Centro de investigación para la ciencia e ingeniería, Mayaguez (2006)

    Google Scholar 

  22. Galanakis, C.M.: Handbook of Coffee Processing By-Products. Sustainable Applications. Elsevier, Grecia (2017). https://doi.org/10.1016/B978-0-12-811290-8.00017-7

    Chapter  Google Scholar 

  23. García, C., Riegelhaupt, E., Ghilardi, A., Skutsch, M., Islas, J., Manzini, F.: Sustainable bioenergy options for Mexico: GHG mitigation and costs. Renew. Sustain. Energy Rev. 43, 545–552 (2015). https://doi.org/10.1016/j.rser.2014.11.062

    Article  Google Scholar 

  24. Gold, S., Seuring, S.: Supply chain and logistics issues of bio-energy production. J. Clean. Prod. 32–42 (2010). https://doi.org/10.1016/j.jclepro.2010.08.009

    Article  Google Scholar 

  25. Haberl, H., Beringer, T., Bhattacharya, S.C., Erb, K.-H., Hoogwijk, M.: The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr. Opin. Environ. Sustain. 2(5), 39–403 (2010). https://doi.org/10.1016/j.cosust.2010.10.007

    Article  Google Scholar 

  26. Hitzeroth, M., Megerle, A.: Renewable energy projects: acceptance risks and their management. Renew. Sustain. Energy Rev. 576–584 (2013). https://doi.org/10.1016/j.rser.2013.07.022

    Article  Google Scholar 

  27. Hoogwijk, M., Faaij, A., Eickhout, B., de Vries, B., Turkenburg, W.: Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenerg. 29(4), 225–257 (2005). https://doi.org/10.1016/j.biombioe.2005.05.002

    Article  Google Scholar 

  28. IEA: Renewable Information International Agency. Paris (2013)

    Google Scholar 

  29. Illy, A., Viani, R.: Espresso Coffee: The Science of Quality, 2nd edn. Elsevier Academic Press, London (2005)

    Google Scholar 

  30. Karthikeyan, N., Petri, L.-K., Anas, Z.: New methodological approach for biomass resource assessment in India using GIS application and land use/land cover (LULC) maps. Renew. Sustain. Energy Rev. 63, 256–268 (2019). https://doi.org/10.1016/j.rser.2016.05.070

    Article  Google Scholar 

  31. Kleinwächter, M., Bytof, G., Selmar, D.: Coffee beans and processing. In: Coffee in Health and Disease Prevention, pp. 73–81. Academic Press, San Diego (2015). https://doi.org/10.1016/B978-0-12-409517-5.00009-7

    Chapter  Google Scholar 

  32. Larsen, H.: The future energy system distributed production and use. Riso National Laboratory, Denmark (2005). ISBN 87-550-3472-1

    Google Scholar 

  33. Massey, J.: Coffee Production, Consumption and Health Benefits. NOVA Publishers, New York (2015)

    Google Scholar 

  34. Mirza, U., Ahmad, N., Majeed, T.: An overview of biomass energy utilization in Pakistan. Renew. Sustain. Energy Rev. 12(7), 1988–1996 (2008). https://doi.org/10.1016/j.rser.2007.04.001

    Article  Google Scholar 

  35. Musango, J.: Technology sustainability assessment of biodiesel development in South Africa: a system dynamics approach. Energy 12, 6922–9640 (2011). https://doi.org/10.1016/j.energy.2011.09.028

    Article  Google Scholar 

  36. Musango, J.: A system dynamics approach to technology sustainability assessment: the case of biodiesel developments in South Africa. Technovation 32, 639–651 (2012). https://doi.org/10.1016/j.technovation.2012.06.003

    Article  Google Scholar 

  37. Newes, E., Bush, B., Peck, C., Peterson, S.: Potential leverage points for development of the cellulosic ethanol industry supply chain. Biofuel 6, 21–29 (2015). https://doi.org/10.1080/17597269.2015.1039452

    Article  Google Scholar 

  38. Offerman, R., Seidenberger, T., Thrän, D., Kaltschmitt, M., Zinoviev, S., Miertus, S.: Assessment of global bioenergy potentials. Mitig. Adapt. Strat. Glob. Change 16(1), 103–115 (2011). https://doi.org/10.1007/s11027-010-9247-9

    Article  Google Scholar 

  39. Organization, I.C.: International Coffee Organization. Recuperado el 09 de Marzo de 2018 (2018), de http://www.ico.org/historical/1990%20onwards/PDF/1a-total-production.pdf

  40. Pinho, T., Coelho, J., Moreira, A., Boaventura-Cunha, J.: Modelling a biomass supply chain through discrete-event simulation. IFAC-Papers OnLine 49(2), 84–89 (2016). https://doi.org/10.1016/j.ifacol.2016.03.015

    Article  Google Scholar 

  41. Pooya, A., Inderwildi, O., Farnood, R., King, D.A.: Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sustain. Energy Rev. 21, 506–523 (2013). https://doi.org/10.1016/j.rser.2012.12.022

    Article  Google Scholar 

  42. Ramachandra, T., Kamakshi, G., Shruthi, B.: Bioresource status in Karnataka. Renew. Sustain. Energy Rev. 8(1), 1–47 (2004). https://doi.org/10.1016/j.rser.2003.09.001

    Article  Google Scholar 

  43. REN: REN21: Renewable Energy Network For the 21th Century. Recuperado el 2017 (2011), de http://www.ren21.net

  44. Roberts, J.J., Cassula, A.M., Prado, P.O., Dias, R.A., Balestieri, J.A.: Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina. Renew. Sustain. Energy Rev. 41, 568–583 (2015). https://doi.org/10.1016/j.rser.2014.08.066

    Article  Google Scholar 

  45. Rodriguez, N.: Producción de bioetanol a partir de la pulpa y el mucilago del café. CENICAFE, Colombia (2007)

    Google Scholar 

  46. Rodriguez, V.: Balance energetico en la producción de etanol a partir de la pulpa y el mucilago de café y poder calorifico de los productos del proceso del cultivo del café. CENICAFE, Colombia (2007)

    Google Scholar 

  47. Rodríguez-Durán, L., Ramírez-Coronel, M., Aranda-Delgado, E., Nampoothiri, K., Favela-Torres, E., Aguilar, C., Saucedo-Castañeda, G.: Soluble and bound hydroxycinnamates in coffee pulp (Coffea arabica) from seven cultivars at three ripening stages. J. Agric. Food Chem. 62(31), 7869–7876 (2014)

    Article  Google Scholar 

  48. Sagardi, M., Sánchez, C., Cortes, G., Alor, G., Cedillo, M.: Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico. Appl. Energy 123, 358–367 (2014). https://doi.org/10.1016/j.apenergy.2014.01.023

    Article  Google Scholar 

  49. Sahoo, K., Hawkins, G., Yao, X., Sample, K., Mani, S.: GIS-based biomass assessment and supply logistics system for a sustainable biorefinery: a case study with cotton stalks in the Southeastern US. Appl. Energy 182, 260–273 (2016). https://doi.org/10.1016/j.apenergy.2016.08.114

    Article  Google Scholar 

  50. Scarlat, N., Dallemand, J.-F., Skjelhaugen, O.J., Asplund, D., Nesheimd, L.: An overview of the biomass resource potential of Norway for bioenergy use. Renew. Sustain. Energy Rev. 15(7), 3388–3398 (2011). https://doi.org/10.1016/j.rser.2011.04.028

    Article  Google Scholar 

  51. Seperamaniam, T., Abdul Jalil, N.A., Zulkefli, Z.A.: Hydrostatic bearing design selection for automotive application using pugh controlled convergence method. Procedia Eng. 422–429 (2017). https://doi.org/10.1016/j.proeng.2017.03.068

    Article  Google Scholar 

  52. Thakker, A., Jarvis, J., Buggy, M., Sahed, A.: 3DCAD conceptual design of the next-generation impulse turbine using the Pugh decision-matrix. Mater. Design 2676–2684 (2009). https://doi.org/10.1016/j.matdes.2008.10.011

    Article  Google Scholar 

  53. Toschi, T., Cardenia, V., Bonaga, G., Mandrioli, M., Rodriguez-Estrada, M.: Coffee silverskin: characterization, possible uses, and safety aspects. J. Agric. Food Chem. 62(44), 10836–10844 (2014). https://doi.org/10.1021/jf503200z

    Article  Google Scholar 

  54. Valdez-Vazquez, I., Acevedo-Benítez, J., Hernández-Santiago, C.: Distribution and potential of bioenergy resources from agricultural activities in Mexico. Renew. Sustain. Energy Rev. 14, 2147–2153 (2012). https://doi.org/10.1016/j.rser.2010.03.034

    Article  Google Scholar 

  55. Vimmerstedt, L., Bush, B., Peterson, S.: Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics. PLOS 7 (2012). https://doi.org/10.1371/journal.pone.0035082

    Article  Google Scholar 

  56. Yildiz, Ö.: Financing renewable energy infrastructures via financial citizen participation—the case of Germany. Renew. Energy 677–685 (2014). https://doi.org/10.1016/j.renene.2014.02.038

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuauhtémoc Sánchez-Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramos-Hernández, R., Sánchez-Ramírez, C., Sandoval-Salas, F., Manotas-Duque, D.F., Rivera-Cadavid, L., Pérez-Rodríguez, S.I. (2020). Systemic Approach for the Design of Renewable Energy Supply Chain Generated from Biomass. In: García-Alcaraz, J., Sánchez-Ramírez, C., Avelar-Sosa, L., Alor-Hernández, G. (eds) Techniques, Tools and Methodologies Applied to Global Supply Chain Ecosystems. Intelligent Systems Reference Library, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-030-26488-8_12

Download citation

Publish with us

Policies and ethics