Skip to main content

Pathophysiology of ctDNA Release into the Circulation and Its Characteristics: What Is Important for Clinical Applications

  • Chapter
  • First Online:
Tumor Liquid Biopsies

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 215))

Abstract

The clinical implications of being able to accurately detect tumor-derived DNA in the circulation, termed circulating tumor DNA (ctDNA), could be enormous. Already, a plethora of clinical applications is under validation that include detection of minimal residual disease and predicting recurrence, monitoring response and resistance to treatment, identifying targets for therapies, and early detection. ctDNA is only a fraction of the total cell-free DNA (cfDNA) which confounds its detection and sometimes conceals its properties. To use ctDNA as a cancer biomarker with confidence, we need to understand its nature. Its characteristics, including size, half-life, and amount, are critical for the development of tests for its detection and discrimination from the rest of the cfDNA. Technological advances have enabled the detection and quantification of individual fragments of cfDNA, which is pivotal for clinical applications. Understanding the causes, the source of and the mechanisms of release of ctDNA are important for the interpretation of test results. Despite the many advances in understanding the nature and biology of ctDNA, we do not yet have a clear appreciation of the processes that govern its presence and levels in the circulation. ctDNA is not detectable in the blood of every cancer patient, and there is not a directly proportional relationship to tumor type, size, or stage. It is not clear if the lack of correlation with these specific clinical parameters is strictly due to technical or biological challenges. Better understanding of the pathophysiology of ctDNA is therefore important for the improvement of clinical applications and interpretation of their results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbosh C, Birkbak NJ, Wilson GA et al (2017) Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545:446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anglesio MS, Papadopoulos N, Ayhan A et al (2017) Cancer-associated mutations in endometriosis without cancer. N Engl J Med 376:1835–1848

    Article  PubMed  PubMed Central  Google Scholar 

  • Anker P, Stroun M, Maurice PA (1975) Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res 35:2375–2382

    CAS  PubMed  Google Scholar 

  • Antonatos D, Patsilinakos S, Spanodimos S et al (2006) Cell-free DNA levels as a prognostic marker in acute myocardial infarction. Ann N Y Acad Sci 1075:278–281

    Article  CAS  PubMed  Google Scholar 

  • Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ (2018) The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc 93:1649–1683

    Article  PubMed  Google Scholar 

  • Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:ra224

    Google Scholar 

  • Breitbach S, Tug S, Simon P (2012) Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med 42:565–586

    Article  PubMed  Google Scholar 

  • Campello YV, Ikuta N, Brondani da Rocha A et al (2007) Role of plasma DNA as a predictive marker of fatal outcome following severe head injury in males. J Neurotrauma 24:1172–1181

    Article  Google Scholar 

  • Chan KCA, Jiang P, Zheng YW et al (2013a) Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 59:211–224

    Article  CAS  PubMed  Google Scholar 

  • Chan KCA, Jiang P, Chan CW et al (2013b) Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A 110:18761–18768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang HW, Lee SM, Goodman SN et al (2002) Assessment of plasma DNA levels, allelic imbalance, and CA 125 as diagnostic tests for cancer. J Natl Cancer Inst 94:1697–1703

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri AA, Chabon JJ, Lovejoy AF et al (2017) Early Detection of molecular residual disease in localized ling cancer by circulating tumor DNA profiling. Cancer Discov 7:1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JJ, Reich CF, Pisetsky DS (2005) The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology 115:55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JD, Javed AA, Thoburn C et al (2017) Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A 114(38):10202–10207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JD, Li L, Wang Y et al (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359:926–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood Nature Reviews. Clin Oncol 10:472–484

    CAS  Google Scholar 

  • Dawson S-J, Tsui DWY, Murtaza M et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Diaz LA Jr, Williams RT, Wu J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl F, Li M, Dressman D et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102:16368–16373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl F, Schmidt K, Choti MC et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985–990

    Article  CAS  PubMed  Google Scholar 

  • Douville C, Springer S, Kinde I et al (2018) Detection of aneuploidy in patients with cancer through amplification of long interspersed nucleotide elements (LINEs). Proc Natl Acad Sci U S A. 115:1871–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dressman D, Yan H, Traverso G et al (2003) Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A 100:8817–8822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi DJ, Toltl LJ, Swystun LL et al (2012) Prognostic utility and characterization of cell-free DNA in patients with severe sepsis. Crit Care 16:R151

    Article  PubMed  PubMed Central  Google Scholar 

  • Emlen W, Mannik M (1978) Kinetics and mechanisms for removal of circulating single-stranded DNA in mice. J Exp Med 147:684–699

    Article  CAS  PubMed  Google Scholar 

  • Forshew T, Murtaza M, Parkinson C et al (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4:136ra68

    Article  CAS  PubMed  Google Scholar 

  • Genovese G, Kähler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancerrisk inferred from blood DNA sequence. N Engl J Med 371:2477–2487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giacona MB, Ruben GC, Iczkowski KA et al (1998) Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas 17:89–97

    Article  CAS  PubMed  Google Scholar 

  • Guibert N, Hu Y, Feeney N et al (2018) Amplicon- based next- generation sequencing of plasma cell- free DNA for detection of driver and resistance mutations in advanced non- small cell lung cancer. Ann Oncol 29:1049–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao X, Luo H, Krawczyk M et al (2017) DNA methylation markers for diagnosis and prognosis of common cancers. PNAS 114:7414–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang ML, Kinde I, Tomasetti C et al (2016) Proc Natl Acad Sci U S A 113:9846–9851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahr S, Hentze H, Englisch S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    CAS  PubMed  Google Scholar 

  • Jiang P, Lo YMD (2016) The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics. Trends Genet 32:360–371

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Chan CW, Chan KC et al (2015) Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A 112:E1317–E1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J-E, Lee N, Gu J-Y et al (2015) Circulating levels of DNA-histone complex and dsDNA are independent prognostic factors of disseminated intravascular coagulation. Thromb Res 135:1064–1069

    Article  CAS  PubMed  Google Scholar 

  • Kinde I, Wu J, Papadopoulos N et al (2011) Proc Natl Acad Sci USA 108:9530–9535

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuang Y, Rogers A, Yeap B et al (2009) Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non–small cell lung cancer. Clin Cancer Res 15:2630–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanman RB, Mortimer SA, Zill OA et al (2015) Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS ONE 10:e0140712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leary RJ, Kinde I, Diehl F et al (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2:20ra14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leary RJ, Sausen M, Kinde I et al (2012) Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl Med. 4:162ra154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehmann-Werman R, Neiman D, Zemmour H et al (2016) Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci U S A 113:E1826–E1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    CAS  PubMed  Google Scholar 

  • Li H, Fan X, Houghton J (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Viochem 101:805–815

    Article  CAS  Google Scholar 

  • Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, Wainscoat JS (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487

    Article  CAS  PubMed  Google Scholar 

  • Lo YM, Tein MS, Lau TK et al (1998a) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62:768–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo YM, Tein MS, Pang CC et al (1998b) Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet 351:1329–1330

    Article  CAS  PubMed  Google Scholar 

  • Lo YM, Zhang J, Leung TN et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64:218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo YM, Chan KC, Sun H et al (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2:61ra91

    Article  CAS  PubMed  Google Scholar 

  • Lui YY, Chil KW, Chiu RW et al (2002) Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem 48:421–427

    CAS  PubMed  Google Scholar 

  • Mandel P, Metais P (1948) Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil 142:241–243

    CAS  PubMed  Google Scholar 

  • Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morbelli S, Alama A, Ferrarazzo G et al (2017) Circulating tumor DNA reflects tumor metabolism rather than tumor burden in chemotherapy-naïve patients with advanced non-small cell lung cancer: 18F-FDG PET/CT study. J Nucl Med 58:1764–1769

    Article  CAS  PubMed  Google Scholar 

  • Mouliere F, Robert B, Arnau Peyrotte E et al (2011) High fragmentation characterizes tumour-derived circulating DNA. PLoS ONE 6:e23418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouliere F, Messaoudi E, Gongara C et al (2013) Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol. 6:319–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Murtaza M, Dawson SD, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    Article  CAS  PubMed  Google Scholar 

  • Newman AM, Bratman SV, To J et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20:548–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman AM, Lovejoy AF, Klass DM et al (2016) Integarated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol 34:547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaev S, Vetiska S, Bonilla X et al (2018) Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med 378:250–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantel K, Alix-Panabières C (2017) Tumour microenvironment: informing on minimal residual disease in solid tumours. Nat Rev Clin Oncol 14:325–326

    Article  PubMed  Google Scholar 

  • Park J, Wysocki RW, Amoozga Z et al (2016) Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 8:361ra138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phallen J, Sausen M, Adleff V et al (2017) Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 9:eaan2415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwarzenbach H, Hoon DSB, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437

    Article  CAS  PubMed  Google Scholar 

  • Sidransky D, von Eschenbach A, Tsai YC et al (1991) Identification of p53 gene mutations in bladder cancers and urine samples. Science 252:706–709

    Article  CAS  PubMed  Google Scholar 

  • Snyder MW, Kircher M, Hill AJ et al (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164:57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sozzi G, Conte D, Mariani L et al (2001) Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res 61:4675–4678

    CAS  PubMed  Google Scholar 

  • Stroun M, Anker P, Maurice P (1989) Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46:318–322

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Jiang P, Chan KC et al (2015) Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A 112:E5503–E5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swystun LL, Mukherjee S, Liaw PC (2011) Breast cancer chemotherapy induces the release of cell free DNA, a novel procoagulant stimulus. J Thromb Haemost 9:2313–2321

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi K, Uchida J, Nishino K et al (2011) Quantitative detection of EGFR mutations in circulating tumor DNAderived from lung adenocarcinomas. Clin Cancer Res 17:7808–7815

    Article  CAS  PubMed  Google Scholar 

  • Thierry AR, El Messaoudi S, Gahan PB et al (2016) Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 35:347–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tie J, Wang Y, Tomasetti C et al (2016) Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 8:346ra92

    Google Scholar 

  • To EWH, Chan KC, Leung SF et al (2003) Rapid clearance of plasma Epstein-Barr virus DNA after surgical treatment of nasopharyngeal carcinoma. Clin Cancer Res 9:3254–3259

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler K (1999) Digital PCR. Proc. Natl Acad Sci U S A 96:9236–9241 (1999)

    Article  CAS  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW et al (2013) Cancer genome landscapes. Science 339:1546–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Bubnoff N (2017) Liquid biopsy: approaches to dynamic genotyping in cancer. Oncology Research and Treatment 40:409–419

    Article  CAS  Google Scholar 

  • Wan JCM, Massie C, Garcia-Corbacho J et al (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17:223–238

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Springe S, Mulvey CL et al (2015a) Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med 7:293ra104

    Google Scholar 

  • Wang Y, Springer S, Zhang M, McMahon KW, Kinde I, Dobbyn L, Ptak J, Brem H, Chaichana K, Gallia GL et al (2015b) Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci U S A 112:9704–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li L, Douville C et al (2018) Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers. Sci Transl Med 10:eaap8793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie M, Lu C, Wang J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolas Papadopoulos .

Editor information

Editors and Affiliations

Epilogue

Epilogue

ctDNA is no longer buried in the annals of molecular research. The field has come long way, and clinical applications utilizing ctDNA have even gained FDA approval. ctDNA detection and its applications are moving fast. However, mechanisms of release and/or increase of ctDNA in the circulation remain somewhat ill-defined; it is still not clear if some tumors do not shed ctDNA, or that the analytical methods are not sensitive enough. Can such knowledge help us to safely and transiently increase the levels of ctDNA, so we can detect it more efficiently?

There are several proposals to increase sensitivity, including collecting more blood or interrogating larger areas of the genome. Each has advantages, but also disadvantages. Some of them are practical, and some based on biology. More blood certainly will increase sensitivity, but may not be acceptable in some situations and result in reduced compliance. Large genome areas could provide the advantage of having multiple trials to identify a signal and potentially avoid stochastic events that can be missed when a single mutation is used as the biomarker. On the other hand, this approach will increase background errors and create issues with the interpretation of the results. The false discovery rate increases with increased numbers of bases included in the analysis as well (Wan et al. 2017). In addition, such an approach might rely on the analysis of non-driver mutations making the interpretation of the results difficult, especially in older individuals who already might harbor cfDNA detectable mutations that are not of cancer origin. Such approaches assume that the issue lies in the inefficiency of the analytical approach to capture and interrogate fragments with genetic alterations derived from cancer cells. However, this may not be always the case, or the desired sensitivity may not be achievable within acceptable levels of specificity.

To this end, other approaches are being explored. We mentioned earlier the possibility of combining somatic mutations and epigenetic changes as biomarkers for the detection of cancer. In a study, mentioned earlier, the sensitivity in detecting head and neck cancers varied based on the anatomical location of the cancer. To test the synergy between different bodily fluids in increasing the sensitivity of detecting mutations, both saliva and blood were collected from people with head and neck cancer. The sensitivity of detecting cancers present in the oral cavity and hypopharynx was 100 and 67%, respectively, when DNA isolated from saliva was used, while the sensitivities were 80 and 100% when ctDNA prepared from blood was used (Wang et al. 2015a). Similar results have been observed for ovarian cancer in samples collected from Pap smears and plasma from the same individuals (Wang et al. 2018). While all these combinations include tumor-derived DNA, a recent study explored the combination of ctDNA and protein markers for the early detection of cancer, providing very encouraging results (Cohen et al. 2018). We can imagine that other types of analytes, like metabolites, could augment sensitivity when combined with ctDNA.

There are many studies trying to address the issues associated with ctDNA detection. But, there are not any systematic studies yet to address if location within an organ, vascularization, or the number of mitotic figures correlates better with the amount of released ctDNA. The combination of improved methods for the detection of cancer and improved understanding between the relationship of ctDNA release and the pathological state of the cancer could help in providing better quality information for the management of cancer patients, by providing more significant quantitative and qualitative measurements of ctDNA.

An intersection of current knowledge, technical capabilities, and the requirements of clinical applications (some requiring superb sensitivity and some requiring superb specificity), even with our current status of incomplete knowledge, could help develop better ways of managing cancer patients. Detecting ctDNA for clinical applications should not be viewed in the absence of other parameters or as the sole determinant of a clinical decision. Studies, especially prospective, with accurate clinical information about the participants and their tumors, performed under IRB-approved protocols, will reveal relationships between ctDNA, its potential synergy with other analytes or other modalities, the status of the patients, and tumor characteristics. Deeper investigation into the answered questions about ctDNA will help us relate fundamental biological questions to real clinical situations.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papadopoulos, N. (2020). Pathophysiology of ctDNA Release into the Circulation and Its Characteristics: What Is Important for Clinical Applications. In: Schaffner, F., Merlin, JL., von Bubnoff, N. (eds) Tumor Liquid Biopsies. Recent Results in Cancer Research, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-030-26439-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26439-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26438-3

  • Online ISBN: 978-3-030-26439-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics