Skip to main content

Quantitative Analysis of Circulating Tumor Cells Using RNA-Based Digital Scoring

  • Chapter
  • First Online:
Tumor Liquid Biopsies

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 215))

Abstract

Circulating tumor cells (CTCs) provide valuable information about the molecular evolution of cancers, as they may initially respond and ultimately progress on therapy. As intact tumor cells isolated from the bloodstream, CTCs also enable assessment of heterogeneous subpopulations, and their analysis may include DNA, RNA, and protein biomarkers. New microfluidic cell isolation strategies greatly facilitate the challenge of enriching viable tumor cells from the billions of hematopoietic cells within a standard blood specimen. While counting and characterization of enriched CTCs have primarily relied on immunostaining for tumor cell-specific antigens, new RNA-based analytic platforms are providing new insight into the identity of CTCs and providing new tools for clinical applications. Single-cell RNA sequencing of CTCs reveals a high degree of heterogeneity among cancer cells from a single individual, while new digital RNA-based amplification platforms may now allow high-sensitivity and high-throughput quantitative scoring of CTCs for clinical applications. Here, we focus on transcriptomic analysis of CTCs and its relevance in understanding metastatic cancer progression and in developing diagnostic assays to monitor cancer.

Mark Kalinich and Tanya T. Kwan contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aceto N, Bardia A, Miyamoto DT et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–1122

    Article  CAS  Google Scholar 

  • Alix-Panabières C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14:623–631

    Article  Google Scholar 

  • Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AGJ, Uhr JW, Terstappen LWMM (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10:6897–6904

    Article  Google Scholar 

  • Arenberger P, Arenbergerova M, Vohradnikova O, Kremen J (2008) Early detection of melanoma progression by quantitative real-time RT-PCR analysis for multiple melanoma markers. Keio J Med 57:57–64

    Article  CAS  Google Scholar 

  • Cristofanilli M, Budd GT, Ellis MJ et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791

    Article  CAS  Google Scholar 

  • Cristofanilli M, Budd GT, Ellis MJ, et al (2009) Circulating tumor cells, disease progression, and survival in metastatic breast cancer 351:781–791. http://doi.org/10.1056/NEJMoa040766

    Article  CAS  Google Scholar 

  • Easwaran H, Tsai H-C, Baylin SB (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 54:716–727

    Article  CAS  Google Scholar 

  • Gazzaniga P, Gradilone A, Petracca A, Nicolazzo C, Raimondi C, Iacovelli R, Naso G, Cortesi E (2010) Molecular markers in circulating tumour cells from metastatic colorectal cancer patients. J Cell Mol Med 14:2073–2077

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  • Hong X, Sullivan RJ, Kalinich M et al (2018) Molecular signatures of circulating melanoma cells for monitoring early response to immune checkpoint therapy. PNAS 114:1123–1128

    Google Scholar 

  • Ignatiadis M, Lee M, Jeffrey SS (2015) Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res 21:4786–4800

    Article  CAS  Google Scholar 

  • Kalinich M, Bhan I, Kwan TT et al (2017) An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma. PNAS 114:1123–1128

    Article  CAS  Google Scholar 

  • Kalinina O, Lebedeva I, Brown J, Silver J (1997) Nanoliter scale PCR with TaqMan detection. Nucleic Acids Res 25:1999–2004

    Article  CAS  Google Scholar 

  • Kar S, Carr BI (1995) Detection of liver cells in peripheral blood of patients with advanced-stage hepatocellular carcinoma. Hepatology 21:403–407

    CAS  PubMed  Google Scholar 

  • Kwan, TT, Bardia, A, Spring, LM et al (2018) A digital RNA signature of circulating tumor cells predicting early therapeutic response in localized and metastatic breast cancer. Cancer Discov 8(10):1286–1299

    Article  CAS  Google Scholar 

  • Luo X, Mitra D, Sullivan RJ et al (2014) Isolation and molecular characterization of circulating melanoma cells. Cell Rep 7:645–653

    Article  CAS  Google Scholar 

  • Ma Y, Luk A, Young FP, Lynch D, Chua W, Balakrishnar B, de Souza P, Becker TM (2016) Droplet digital PCR Based Androgen Receptor Variant 7 (AR-V7) detection from prostate cancer patient blood biopsies. Int J Mol Sci 17:1264

    Article  Google Scholar 

  • McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–628

    Article  CAS  Google Scholar 

  • Miyamoto DT, Lee RJ, Stott SL et al (2012) Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov 2:995–1003

    Article  CAS  Google Scholar 

  • Miyamoto DT, Zheng Y, Wittner BS et al (2015) RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349:1351–1356

    Article  CAS  Google Scholar 

  • Miyamoto DT, Lee RJ, Kalinich M et al (2018) An RNA-based digital circulating tumor cell signature is predictive of drug response and early dissemination in prostate cancer. Cancer Discov CD-16-1406

    Google Scholar 

  • Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239

    Article  CAS  Google Scholar 

  • Nardi V, Azam M, Daley GQ (2004) Mechanisms and implications of imatinib resistance mutations in BCR-ABL. Curr Opin Hematol 11:35–43

    Article  CAS  Google Scholar 

  • Ozkumur E, Shah AM, Ciciliano JC et al (2013) Inertial focusing for tumor antigen–dependent and –independent sorting of rare circulating tumor cells. Sci Transl Med 5:179ra47–179ra47

    Article  Google Scholar 

  • Parkin B, Londoño-Joshi A, Kang Q, Tewari M, Rhim AD, Malek SN (2017) Ultrasensitive mutation detection identifies rare residual cells causing acute myelogenous leukemia relapse. J Clin Invest 127:3484–3495

    Article  Google Scholar 

  • Payne RE, Wang F, Su N, Krell J, Zebrowski A, Yagüe E, Ma X-J, Luo Y, Coombes RC (2012) Viable circulating tumour cell detection using multiplex RNA in situ hybridisation predicts progression-free survival in metastatic breast cancer patients. Br J Cancer 106:1790–1797

    Article  CAS  Google Scholar 

  • Pfitzner C, Schröder I, Scheungraber C, Dogan A, Runnebaum IB, Dürst M, Häfner N (2014) Digital-Direct-RT-PCR: a sensitive and specific method for quantification of CTC in patients with cervical carcinoma. Nature Publishing Group 4:3970

    Google Scholar 

  • Pierga J-Y, Bidard F-C, Denis MG, de Cremoux P (2007) Prognostic value of peripheral blood double detection of CK19 and MUC1 mRNA positive cells detected by RT-quantitative PCR in 94 breast cancer patients with a follow up of 9 years. Mol Oncol 1:267–268

    Article  Google Scholar 

  • Poste G, Fidler IJ (1980) The pathogenesis of cancer metastasis. Nature 283:139–146

    Article  CAS  Google Scholar 

  • Powell AA, Talasaz AH, Zhang H et al (2012) Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7:e33788

    Article  CAS  Google Scholar 

  • Seiden MV, Kantoff PW, Krithivas K, Propert K, Bryant M, Haltom E, Gaynes L, Kaplan I, Bubley G, DeWolf W (1994) Detection of circulating tumor cells in men with localized prostate cancer. J Clin Oncol 12:2634–2639

    Article  CAS  Google Scholar 

  • Shen C, Hu L, Xia L, Li Y (2009) The detection of circulating tumor cells of breast cancer patients by using multimarker (Survivin, hTERT and hMAM) quantitative real-time PCR. Clin Biochem 42:194–200

    Article  CAS  Google Scholar 

  • Stott SL, Lee RJ, Nagrath S et al (2010) Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med 2:25ra23–25ra23

    Article  Google Scholar 

  • Ting DT, Wittner BS, Ligorio M et al (2014) Single-Cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 8:1905–1918

    Article  CAS  Google Scholar 

  • Tirosh I, Venteicher AS, Hebert C et al (2016) Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature Publishing Group 539:309–313

    Google Scholar 

  • Vogelstein B, Kinzler KW (1999) Digital PCR. PNAS 96:9236–9241

    Article  CAS  Google Scholar 

  • Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nature Publishing Group 17:223–238

    CAS  Google Scholar 

  • Wu S, Liu S, Liu Z, Huang J, Pu X, Li J, Yang D, Deng H, Yang N, Xu J (2015) Classification of circulating tumor cells by epithelial-mesenchymal transition markers. PLoS ONE 10:e0123976

    Article  Google Scholar 

  • Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382

    Article  CAS  Google Scholar 

  • Yu M, Ting DT, Stott SL et al (2012) RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature Publishing Group 487:510–513

    CAS  Google Scholar 

  • Yu M, Bardia A, Wittner BS et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584

    Article  CAS  Google Scholar 

  • Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W (2015) Exosomes in cancer: small particle, big player. J Hematol Oncol 8:83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamala Maheswaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalinich, M., Kwan, T.T., Toner, M., Haber, D.A., Maheswaran, S. (2020). Quantitative Analysis of Circulating Tumor Cells Using RNA-Based Digital Scoring. In: Schaffner, F., Merlin, JL., von Bubnoff, N. (eds) Tumor Liquid Biopsies. Recent Results in Cancer Research, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-030-26439-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26439-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26438-3

  • Online ISBN: 978-3-030-26439-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics