Skip to main content

Safety Design of Water Infrastructures in a Modern Era

  • Chapter
  • First Online:
Resilience of Large Water Management Infrastructure
  • 279 Accesses

Abstract

Over the past century, numerous water infrastructures have been built to serve the water-related need of people worldwide (Mitchell, 1990). Those larger ones often serve multiple purposes, such as agriculture, navigation, hydropower, and flooding control. Failure of such high-hazard dams, especially those with flooding control purposes, would bring catastrophic ecological and societal loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbs DJ (1999) A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation. Water Resour Res 35(3):785–796. https://doi.org/10.1029/1998WR900013

    Article  Google Scholar 

  • Beauchamp J, Leconte R, Trudel M, Brissette F (2013) Estimation of the summer-fall PMP and PMF of a northern watershed under a changed climate. Water Resour Res 49(6):3852–3862. https://doi.org/10.1002/wrcr.20336

    Article  Google Scholar 

  • Bergeron T (1965) On the low-level redistribution of atmospheric water caused by orography. In: Proceedings of international conference on cloud physics, pp 96–100

    Google Scholar 

  • Chen LC, Bradley AA (2006) Adequacy of using surface humidity to estimate atmospheric moisture availability for probable maximum precipitation. Water Resour Res 42(9):1–17. https://doi.org/10.1029/2005WR004469

    Article  Google Scholar 

  • Chen X, Hossain F (2018) Understanding model-based probable maximum precipitation estimation as a function of location and seasons from atmospheric reanalysis. J Hydrometeorol https://doi.org/10.1175/jhm-d-17-0170.1

    Article  Google Scholar 

  • Chen X, Hossain F, Leung LR (2017) Probable maximum precipitation in the U.S. Pacific Northwest in a changing climate. Water Resour Res 53(11):9600–9622. https://doi.org/10.1002/2017wr021094

    Article  Google Scholar 

  • Cheng L, AghaKouchak A (2014) Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Sci Rep 4:7093. https://doi.org/10.1038/srep07093

    Article  Google Scholar 

  • Cheng L, AghaKouchak A, Gilleland E, Katz RW (2014) Non-stationary extreme value analysis in a changing climate. Clim Change 127(2):353–369. https://doi.org/10.1007/s10584-014-1254-5

    Article  Google Scholar 

  • Douglas EM, Barros AP (2003) Probable maximum precipitation estimation using multifractals: application in the eastern United States. J Hydrometeorol 4(6):1012–1024. https://doi.org/10.1175/1525-7541(2003)004%3c1012:PMPEUM%3e2.0.CO;2

    Article  Google Scholar 

  • Frank W (1988) The cause of the Johnstown flood. Civ Eng 58(5):63–66

    Google Scholar 

  • Gao M, Mo D, Wu X (2016) Nonstationary modeling of extreme precipitation in China. Atmos Res 182:1–9. https://doi.org/10.1016/j.atmosres.2016.07.014

    Article  Google Scholar 

  • Hayes BD, Kao SC, Kanney JF, Quinlan KR, De Neale ST (2015) Site specific probable maximum precipitation estimates and professional judgement. In: AGU fall meeting abstracts

    Google Scholar 

  • Heim RR, Guttman NB (1997) On computing 1971–2000 climate normals in the ASOS era. In: Proceedings of 10th conference on applications of meteorology, pp 171–175

    Google Scholar 

  • Hershfield DM (1965) Method for estimating probable maximum rainfall. J Am Water Works Assoc 57(8):965–972

    Article  Google Scholar 

  • Hobbs PV (1989) Research on clouds and precipitation: past, present, and future. I. Bull Am Meteorol Soc 70(3):282–285

    Google Scholar 

  • Hossain F, Degu AM, Yigzaw W, Burian S, Niyogi D, Shepherd JM, Pielke R Sr (2012) Climate feedback-based provisions for dam design, operations, and water management in the 21st century. J Hydrol Eng 17(August):837–850. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000541

    Article  Google Scholar 

  • Hu M, Luo C (1992) Historical floods of China. China Bookstore Publishing House

    Google Scholar 

  • International Atomic Energy Agency (2003) Flood hazard for nuclear power plants on coastal and river sites

    Google Scholar 

  • International Atomic Energy Agency (2009) Hydrological hazards in site evaluation for nuclear installations

    Google Scholar 

  • Ishida K, Kavvas ML, Asce F, Jang S, Chen Z, Asce AM, Ohara N, Asce AM, Anderson ML, Asce AM (2015) Physically based estimation of maximum precipitation over three watersheds in Northern California: atmospheric boundary condition shifting. J Hydrol Eng 20(4):04014052. https://doi.org/10.1061/(asce)he.1943-5584.0001026

    Article  Google Scholar 

  • Koutsoyiannis D (1999) A probabilistic view of hershfield’s method for estimating probable maximum precipitation. Water Resour Res 35(4):1313–1322

    Article  Google Scholar 

  • Kunkel KE, Karl TR, Easterling DR, Redmond K, Young J, Yin X, Hennon P (2013) Probable maximum precipitation and climate change. Geophys Res Lett 40(7):1402–1408. https://doi.org/10.1002/grl.50334

    Article  Google Scholar 

  • Lee J, Choi J, Lee O, Yoon J, Kim S (2017) Estimation of probable maximum precipitation in Korea using a regional climate model. Water 9(4)

    Article  Google Scholar 

  • Liu C-C, Yang T-C, Kuo C-M, Chen J-M, Yu P-S (2016) Estimating probable maximum precipitation by considering combined effect of typhoon and southwesterly air flow. Terr Atmos Ocean Sci 27(6)

    Article  Google Scholar 

  • Micovic Z, Schaefer MG, Taylor GH (2015) Uncertainty analysis for probable maximum precipitation estimates. J Hydrol 521:360–373. https://doi.org/10.1016/j.jhydrol.2014.12.033

    Article  Google Scholar 

  • Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470(7334):378–381. https://doi.org/10.1038/nature09763

    Article  CAS  Google Scholar 

  • Mitchell B (1990) Integrated water management: international experiences and perspectives. Belhaven Press, London

    Google Scholar 

  • National Research Council (1994) Estimating bounds on extreme precipitation events: a brief assessment. The National Academies Press, Washington, DC

    Google Scholar 

  • Ohara N, Kavvas M, Kure S, Chen Z, Jang S (2011) Physically based estimation of maximum precipitation over American river watershed, California. J Hydrol Eng 16(4):351–361. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000324

    Article  Google Scholar 

  • Ohara N, Kavvas ML, Anderson ML, Chen ZQ, Ishida K (2017) Characterization of extreme storm events using a numerical model-based precipitation maximization procedure in the Feather, Yuba, and American river watersheds in California. J Hydrometeorol 18(5):1413–1423. https://doi.org/10.1175/JHM-D-15-0232.1

    Article  Google Scholar 

  • Papalexiou SM, Koutsoyiannis D (2006) A probabilistic approach to the concept of probable maximum precipitation. Adv Geosci 7:51–54

    Article  Google Scholar 

  • Prasad R, Hibler LF, Coleman AM, Ward DL (2011) Design-basis flood estimation for site characterization at nuclear power plants in the United States of America

    Google Scholar 

  • Rakhecha PR, Kennedy MR (1985) A generalised technique for the estimation of probable maximum precipitation in India. J Hydrol 78(3):345–359. https://doi.org/10.1016/0022-1694(85)90112-X

    Article  Google Scholar 

  • Rakhecha PR, Singh VP (2009) Applied hydrometeorology. Springer Science+Business Media, Berlin

    Chapter  Google Scholar 

  • Rastogi D, Kao S-C, Ashfaq M, Mei R, Kabela ED, Gangrade S, Naz BS, Preston BL, Singh N, Anantharaj VG (2017) Effects of climate change on probable maximum precipitation: a sensitivity study over the Alabama-Coosa-Tallapoosa River Basin. J Geophys Res Atmos 122(9):4808–4828. https://doi.org/10.1002/2016JD026001

    Article  Google Scholar 

  • Rouhani H (2016) Climate change impact on probable maximum precipitatio and probable maximum flood in Quebec. Université de Sherbrooke, Quebec

    Google Scholar 

  • Rousseau AN, Klein IM, Freudiger D, Gagnon P, Frigon A, Ratté-Fortin C (2014) Development of a methodology to evaluate probable maximum precipitation (PMP) under changing climate conditions: application to southern Quebec, Canada. J Hydrol 519:3094–3109. https://doi.org/10.1016/j.jhydrol.2014.10.053

    Article  Google Scholar 

  • Salas JD, Gavilán G, Salas FR, Julien PY, Abdullah J (2014) Uncertainty of the PMP and PMF. Handb Eng Hydrol 2:575–603

    Google Scholar 

  • Sun X, Barros AP (2010) An evaluation of the statistics of rainfall extremes in rain gauge observations, and satellite-based and reanalysis products using universal multifractals. J Hydrometeorol 11(2):388–404. https://doi.org/10.1175/2009JHM1142.1

    Article  Google Scholar 

  • Tan E (2010) Development of a methodology for probable maximum precipitation estimation over the American river watershed using the WRF model. University of California, Davis

    Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1217 + 1161. https://doi.org/10.1175/bams-84-9-1205

    Article  Google Scholar 

  • US Weather Bureau (1961) Interim report, probable maximum precipitation in California

    Google Scholar 

  • VandenBerge DR, Duncan JM, Brandon T (2011) Lessons learned from Dam failures. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Wang J, Fisher BL, Wolff DB (2008) Estimating rain rates from tipping-bucket rain gauge measurements. J Atmos Ocean Technol 25(1):43–56. https://doi.org/10.1175/2007JTECHA895.1

    Article  Google Scholar 

  • Wi S, Valdés JB, Steinschneider S, Kim T-W (2016) Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima. Stoch Environ Res Risk Assess 30(2):583–606. https://doi.org/10.1007/s00477-015-1180-8

    Article  Google Scholar 

  • World Meteorological Organization (2009) Manual on estimation of probable maximum precipitation, 3rd edn. Geneva

    Google Scholar 

  • Yang L, Smith JA (2018) Sensitivity of extreme rainfall to atmospheric moisture content in the arid/semi-arid Southwestern US: implications for probable maximum precipitation estimates J Geophys Res Atmos 123:1638–1656. https://doi.org/10.1002/2017JD027850

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X. (2020). Safety Design of Water Infrastructures in a Modern Era. In: Hossain, F. (eds) Resilience of Large Water Management Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-26432-1_8

Download citation

Publish with us

Policies and ethics