State of the Art

  • Adrià ColoméEmail author
  • Carme Torras
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 134)


The recent trend of building more human-like robots and as using them in uncontrolled environments, presents several challenges that increase the complexity of task learning. It is required to have an integrated system capable of properly handling the kinematics and dynamics of the robot in the process of learning. Additionally, bimanual robots need to be configured in a way their arms are able to coordinate their motion while handling an object. Within this context, some key elements need to be taken into account, such as:
  • Robot kinematics, specially Inverse Kinematics (IK) for redundant serial robots.

  • Bimanual manipulation, in particular, the relative positioning of two robotic arms.

  • Compliant control and wrench estimation. Additionally to the kinematics aspect, we wanted to have a safe robot behavior also capable of detecting external disturbances while performing tasks.

In this chapter, we provide an overview of the key theoretical elements previous to our work, in order to accomplish the kinematic and dynamic control, taking into account workspace capabilities, kinematics and control.


  1. 1.
    Aghili, F.: Adaptive control of manipulators forming closed kinematic chain with inaccurate kinematic model. IEEE/ASME Trans. Mechatron. 18(5), 1544–1554 (2013)CrossRefGoogle Scholar
  2. 2.
    Alcocer, A., Robertsson, A., Valera, A., Johansson, R.: Force estimation and control in robot manipulators. In: Sasiadek, J., Duleba, I. (eds.) Robot Control 2003, pp. 31–36 (2004)Google Scholar
  3. 3.
    Antonelli, G.: Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Trans. Robot. 25(5), 985–994 (2009)CrossRefGoogle Scholar
  4. 4.
    Assal, S.F.M., Watanabe, K., Izumi, K.: Neural network-based kinematic inversion of industrial redundant robots using cooperative fuzzy hint for the joint limits avoidance. IEEE/ASME Trans. Mechatron. 11(5), 593–603 (2006)CrossRefGoogle Scholar
  5. 5.
    Baillieul, J.: Kinematic programming alternatives for redundant manipulators. IEEE International Conference on Robotics and Automation (ICRA) 2, 722–728 (1985)Google Scholar
  6. 6.
    Burgard, W., Brock, O., Stachniss, C.: Safety Evaluation of Physical Human-Robot Interaction via Crash-Testing, pp. 1–352. MIT Press (2008)Google Scholar
  7. 7.
    Buss, S.R., Kim, J.-S.: Selectively damped least squares for inverse kinematics. J. Graph. Tools 10(3), 37–49 (2005)CrossRefGoogle Scholar
  8. 8.
    Chiaverini, S., Egeland, O., Kanestrom, R.K.: Achieving user-defined accuracy with damped least-squares inverse kinematics. In: IEEE Fifth International Conference on Advanced Robotics (ICAR), pp. 672–677 (1991)Google Scholar
  9. 9.
    Chiaverini, S., Oriolo, G., Walker, I.D.: Kinematically redundant manipulators. In: Handbook of Robotics. Springer (2008)Google Scholar
  10. 10.
    Chiaverini, S., Siciliano, B., Egeland, O.: Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator. IEEE Trans. Control. Syst. Technol. 2(2), 123–134 (1994)CrossRefGoogle Scholar
  11. 11.
    Cline, A.K., Moler, C.B., Stewart, G.W., Wilkinson, J.H.: An estimate for the condition number of a matrix. SIAM J. Numer. Anal. 16(2), 368–375 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Van Damme, M., Beyl, P., Vanderborght, B., Grosu, V., Van Ham, R., Vanderniepen, I., Matthys, A., Lefeber, D.: Estimating robot end-effector force from noisy actuator torque measurements. In IEEE International Conference on Robotics and Automation (ICRA), pp. 1108–1113 (2011)Google Scholar
  13. 13.
    Das, H., Slotine, J.-E., Sheridan, T.B.: Inverse kinematic algorithms for redundant systems. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 43–48 (1988)Google Scholar
  14. 14.
    Deo, A.S., Walker, I.D.: Minimum effort inverse kinematics for redundant manipulators. IEEE Trans. Robot. Autom. 13(5), 767–775 (1997)CrossRefGoogle Scholar
  15. 15.
    Ding, X., Fang, C.: A novel method of motion planning for an anthropomorphic arm based on movement primitives. IEEE/ASME Trans. Mechatron. 18(2), 624–636 (2013)CrossRefGoogle Scholar
  16. 16.
    Doty, K.L., Melchiorri, C., Schwartz, E.M., Bonivento, C.: Robot manipulability. IEEE Trans. Robot. Autom. 11(3), 462–468 (1995)CrossRefGoogle Scholar
  17. 17.
    Duffy, J.: The fallacy of modern hybrid control theory that is based on orthogonal complements of twist and wrench spaces. J. Robot. Syst. 139(2), 144–199 (1990)Google Scholar
  18. 18.
    Falco, P., Natale, C.: On the stability of closed-loop inverse kinematics algorithms for redundant robots. IEEE Trans. Robot. 27(4), 780–784 (2011)CrossRefGoogle Scholar
  19. 19.
    Funda, J., Taylor, R.H., Eldridge, B., Gomory, S., Gruben, K.G.: Constrained cartesian motion control for teleoperated surgical robots. IEEE Trans. Robot. Autom. 12(3), 453–465 (1996)CrossRefGoogle Scholar
  20. 20.
    Hyon, S.H., Hale, J.G., Cheng, G.: Full-body compliant human humanoid interaction: balancing in the presence of unknown external forces. IEEE Trans. Robot. 23(5), 884–898 (2007)CrossRefGoogle Scholar
  21. 21.
    Jiang, Z.-P., Wang, Y.: A converse lyapunov theorem for discrete-time systems with disturbances. Syst. Control Lett. 45(1), 49–58 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)CrossRefGoogle Scholar
  23. 23.
    Kim, K.-Y., Song, H.-S., Suh, J.-W., Lee, J.-J.: A novel surgical manipulator with workspace-conversion ability for telesurgery. IEEE/ASME Trans. Mechatron. 18(1), 200–211 (2013)CrossRefGoogle Scholar
  24. 24.
    Klanke, S., Vijayakumar, S., Schaal, S.: A library for locally weighted projection regression. J. Mach. Learn. Res. 9, 623–626 (2008)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Klein, C.A., Blaho, B.E.: Dexterity measures for the design and control of kinematically redundant manipulators. Int. J. Robot. Res. 6(2), 72–83 (1987)CrossRefGoogle Scholar
  26. 26.
    McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley (2000)Google Scholar
  27. 27.
    Mitrovic, D., Nagashima, S., Klanke, S., Matsubara, T., Vijayakumar, S.: Optimal feedback control for anthropomorphic manipulators. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4143–4150 (2010)Google Scholar
  28. 28.
    Nakamura, Y.: Advanced Robotics: Redundancy and Optimization. Addison-Wesley Longman Publishing Co., Inc. (1990)Google Scholar
  29. 29.
    Nguyen-Tuong, D., Seeger, M., Peters, J.: Computed torque control with nonparametric regression models. In: American Control Conference, pp. 212–217 (2008)Google Scholar
  30. 30.
    Orin, D.E., Schrader, W.W.: Efficient computation of the jacobian for robot manipulators. Int. J. Robot. Res. 3(4), 66–75 (1984)CrossRefGoogle Scholar
  31. 31.
    Ott, C., Eiberger, O., Friedl, W., Bauml, B., Hillenbrand, U., Borst, C., Albu-Schaffer, A., Brunner, B., Hirschmuller, H., Kielhofer, S., Konietschke, R., Suppa, M., Wimbock, T., Zacharias, F., Hirzinger, G.: A humanoid two-arm system for dexterous manipulation. In: 6th IEEE-RAS International Conference on Humanoid Robots, pp. 276–283 (2006)Google Scholar
  32. 32.
    Park, I.-W., Lee, B.-J., Cho, S.-H., Hong, Y.-D., Kim, J.-H.: Laser-based kinematic calibration of robot manipulator using differential kinematics. IEEE/ASME Trans. Mechatron. 17(6), 1059–1067 (2012)CrossRefGoogle Scholar
  33. 33.
    Porta, J.M., Ros, L., Thomas, F.: Inverse kinematics by distance matrix completion. In: 12th International Workshop on Computational Kinematics, pp. 1–9 (2005)Google Scholar
  34. 34.
    Rabiner, L.R., McClellan, J.H., Parks, T.W.: FIR digital filter design techniques using weighted Chebyshev approximation. Proc. IEEE 63(4), 595–610 (1975)CrossRefGoogle Scholar
  35. 35.
    Ranjbaran, F., Angeles, J., Kecskeméthy, A.: On the kinematic conditioning of robotic manipulators. IEEE International Conference on Robotics and Automation (ICRA) 4, 3167–3172 (1996)CrossRefGoogle Scholar
  36. 36.
    Rao, R.S., Asaithambi, A., Agrawal, S.K.: Inverse kinematic solution of robot manipulators using interval analysis. J. Mech. Des. 120(1), 147–150 (1998)CrossRefGoogle Scholar
  37. 37.
    Ruiz de Angulo, V., Torras, C.: Self-calibration of a space robot. IEEE Trans. Neural Netw. 8(4), 951–963 (1997)CrossRefGoogle Scholar
  38. 38.
    Ruiz de Angulo, V., Torras, C.: Speeding up the learning of robot kinematics through function decomposition. IEEE Trans. Neural Netw. 16(6), 1504–1512 (2005)CrossRefGoogle Scholar
  39. 39.
    Ruiz de Angulo, V., Torras, C.: Learning inverse kinematics: reduced sampling through decomposition into virtual robots. IEEE Trans. Syst. Man Cybern. 38(6), 1571–1577 (2008)CrossRefGoogle Scholar
  40. 40.
    Sasaki, S.: Feasibility studies of kinematics problems in the case of a class of redundant manipulators. Robotica 13(03), 233–241 (1995)CrossRefGoogle Scholar
  41. 41.
    Siciliano, B.: A closed-loop inverse kinematic scheme for on-line joint-based robot control. Robotica 8(03), 231–243 (1990)CrossRefGoogle Scholar
  42. 42.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer Science & Business Media (2010)Google Scholar
  43. 43.
    Singh, G.K., Claassens, J.: An analytical solution for the inverse kinematics of a redundant 7-DoF manipulator with link offsets. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2976–2982 (2010)Google Scholar
  44. 44.
    Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulation–a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)CrossRefGoogle Scholar
  45. 45.
    Tamei, T., Shibata, T.: Fast reinforcement learning for three-dimensional kinetic human-robot cooperation with an EMG-to-activation model. Adv. Robot. 25(5), 563–580 (2011)CrossRefGoogle Scholar
  46. 46.
    Townsend, W.T., Salisbury, J.K.: Mechanical Design for Whole-Arm Manipulation, pp. 153–164. Springer, Berlin (1993)CrossRefGoogle Scholar
  47. 47.
    Tucker, M., Perreira, N.D.: Generalized inverses for robotic manipulators. Mech. Mach. Theory 22(6), 507–514 (1987)CrossRefGoogle Scholar
  48. 48.
    Ulbrich, S., Ruiz de Angulo, V., Asfour, T., Torras, C., Dillmann, R.: Rapid learning of humanoid body schemas with kinematic bezier maps. In: 9th IEEE-RAS International Conference on Humanoid Robots, pp. 431–438 (2009)Google Scholar
  49. 49.
    Ulbrich, S., Ruiz De Angulo, V., Asfour, T., Torras, C., Dillmann, R.: General robot kinematics decomposition without intermediate markers. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 620–630 (2012)CrossRefGoogle Scholar
  50. 50.
    Ulbrich, S., Ruiz de Angulo, V., Asfour, T., Torras, C., Dillmann, R.: Kinematic bezier maps. IEEE Trans. Syst. Man Cybern. 42(4), 1215–1230 (2012)CrossRefGoogle Scholar
  51. 51.
    Vahrenkamp, N., Przybylski, M., Asfour, T., Dillmann, R.: Bimanual grasp planning. In: IEEE-RAS 11th International Conference on Humanoid Robots (Humanoids), pp. 493–499 (2011)Google Scholar
  52. 52.
    Whitney, D.E.: Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man Mach. Syst. 10(2), 47–53 (1969)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Wolovich, W.A., Elliott, H.: A computational technique for inverse kinematics. In: IEEE Conference on Decision and Control, pp. 1359–1363 (1984)Google Scholar
  54. 54.
    Yoshikawa, T.: Analysis and control of robot manipulators with redundancy. In: Robotics Research: The First International Symposium, pp. 735–747. MIT Press Cambridge, MA (1984)Google Scholar
  55. 55.
    Yoshikawa, T.: Dynamic manipulability of robot manipulators. IEEE International Conference on Robotics and Automation 2, 1033–1038 (1985)Google Scholar
  56. 56.
    Zacharias, F., Borst, C., Hirzinger, G.: Capturing robot workspace structure: representing robot capabilities. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3229–3236 (2007)Google Scholar
  57. 57.
    Zacharias, F., Leidner, D., Schmidt, F., Borst, C., Hirzinger, G.: Exploiting structure in two-armed manipulation tasks for humanoid robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5446–5452 (2010)Google Scholar
  58. 58.
    Zanchettin, A.M., Ceriani, N.M., Rocco, P., Ding, H., Matthias, B.: Safety in human-robot collaborative manufacturing environments: metrics and control. IEEE Trans. Autom. Sci. Eng. 13(2), 882–893 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institut de Robòtica i Informàtica Industrial (UPC-CSIC)BarcelonaSpain

Personalised recommendations