Skip to main content

Abstract

ASD and psychosis are strictly related since a common historical root linked the two disorders. ASD could be misdiagnosed as psychosis. Schizophrenia and ASD should not be considerate only as a comorbidity tout court, but neuroimaging studies support the statement of a unique neurodevelopmental disorder that includes ASD and SCZ. Genetic and neuropathological common bases link the two spectra. Some syndromes such as del 22q11.2 (Di George syndrome) are a model of the common biological basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolte S, Rudolf L, Poustka F. The cognitive structure of higher functioning autism and schizophrenia: a comparative study. Compr Psychiatry. 2002;43(4):325–30.

    Article  Google Scholar 

  2. Tarazi FI, Sahli ZT, Pleskow J, Mousa SA. Asperger’s syndrome: diagnosis, comorbidity and therapy. Expert Rev Neurother. 2015;15(3):281–93.

    Article  Google Scholar 

  3. American Psychiatric Association (APA). Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  4. Carpenter WT, Tandon R. Psychotic disorders in DSM-5: summary of changes. Asian J Psychiatr. 2013;6(3):266–8.

    Article  Google Scholar 

  5. Hofvander B, Delorme R, Chaste P, Nyden A, Wentz E, Stahlberg O, Hebrecht E, Stopin A, Anckarsater H, Gillberg C, Rastam M, Leboyer M. Psychiatric and psychosocial problems in adults with normal—intelligence autism spectrum disorders. BMC Psychiatry. 2009;9:35.

    Article  Google Scholar 

  6. Lugnegard T, Hallerback MU, Gillberg C. Psychiatric comorbidity in young adults with a clinical diagnosis of Asperger syndrome. Res Dev Disabil. 2011;32(5):1910–7.

    Article  Google Scholar 

  7. Larson FV, Wagner AP, Jones PB, Tantam D, Lai M-C, Baron-Cohen S, Holland A. Psychosis in autism: comparison of the features of both conditions in a dually affected cohort. Br J Psychiatry. 2017;210(4):269–75.

    Article  Google Scholar 

  8. Lehnhardt F, Gawronski A, Pfeiffer K, Kockler H, Schilbach L, Vogeley K. The investigation and differential diagnosis of Asperger syndrome in adults. Dtsch Arztebl Int. 2013;110(45):755–63.

    Google Scholar 

  9. Keller R, Piedimonte A, Bianco F, Bari S, Cauda F. Diagnostic characteristics of psychosis and autism spectrum disorder in adolescence and adulthood. A case series. Autism Open Access. 2015;6:159.

    Google Scholar 

  10. Luciano CC, Keller R, Politi P, Aguglia E, Magnano F, et al. Misdiagnosis of high function autism spectrum disorders in adults: an Italian case series. Autism. 2014;4:131.

    Google Scholar 

  11. Lord C, Rutter M, Di Lavore PC, et al. Autism diagnostic observation schedule: ADOS. Los Angeles: Western Psychological Services; 2002.

    Google Scholar 

  12. Bertelli MO, Rossi M, Scuticchio S, Bianco A. Diagnosing psychiatric disorders in people with intellectual disabilities: issues and achievements. Adv Ment Health Intellect Disabil. 2015;9(5):230–42.

    Article  Google Scholar 

  13. Ritvo RA, Ritvo ER, Guthrie D, et al. The Ritvo Autism Asperger Diagnostic Scale-Revised (RAADS-R): a scale to assist the diagnosis of Autism Spectrum Disorder in adults: an international validation study. J Autism Dev Disord. 2011;41:1076–89.

    Article  Google Scholar 

  14. Keller R, Bari S, Fratianni B, Piedimonte A, Freilone F. Response to Rorschach test in autism spectrum disorders in adulthood: a pilot study. J Psychopathol. 2018;24:224–9.

    Google Scholar 

  15. Lord C, Rutter M, LeCouteur A. Autism Diagnostic Interview-Revised (ADI-R). Los Angeles: Western Psychological Services; 2003.

    Google Scholar 

  16. Esterberg ML, Trotman HD, Brasfield JL, Compton MT, Walker EF. Childhood and current autistic features in adolescents with schizotypal personality disorder. Schizophr Res. 2008;104:265–73.

    Article  Google Scholar 

  17. Mayoral M, Merchan-Naranjo J, Rapado M, Leiva M, Moreno C, Giraldez M, Arango C, Parellda M. Neurological soft signs in juvenile patients with Asperger syndrome, early onset psychosis, and healthy controls. Early Interv Psychiatry. 2010;4:283–90.

    Article  Google Scholar 

  18. Kern RS, Neuchterlein KH, Green MF, Baade LE, Fenton WS, Gold JM, Keefe RSE, Mesholam-gately R, Mintz J, Seidman LJ, Stover E, Marder S. The MATRICS consensus cognitive battery, part 2: co-norming and standardization. Am J Psychiatr. 2008;165:214–20.

    Article  Google Scholar 

  19. Fitzgerald D, Lucas S, Redoblado MA, Winter V, Brennan J, Anderson J, et al. Cognitive functioning in young people with first episode psychosis: relationship to diagnosis and clinical characteristics. Aust N Z J Psychiatry. 2004;38:501–10.

    Article  Google Scholar 

  20. Howes OD, Fusar-Poli P, Bloomfield M, Selvaraj S, McGuire P. From the prodrome to chronic schizophrenia: the neurobiology underlying psychotic symptoms and cognitive impairments. Curr Pharm Des. 2012;18(4):459–65.

    Article  Google Scholar 

  21. Harvey PD, Green MF, Keefe RS, Velligan DI. Cognitive functioning in schizophrenia: a consensus statement on its role in definition and evaluation of effective treatments for the illness. J Clin Psychiatry. 2004;65(3):361–72.

    Article  Google Scholar 

  22. Rund BR, Melle I, Friis S, Larsen TK, Midbøe LJ, Opjordsmoen S, Simonsen E, Vaglum P, McGlashan T. Neurocognitive dysfunction in first-episode psychosis: correlates with symptoms, premorbid adjustment, and duration of untreated psychosis. Am J Psychiatry. 2004;161(3):466–72.

    Article  Google Scholar 

  23. Brewer WJ, Francey SM, Wood SJ, Jackson H, Pantelis C, Philiès LJ, Yung AR, Anderson VA, McGorry PD. Memory impairments identified in people at ultra-high risk of psychosis who later develop first-episode psychosis. Am J Psychiatr. 2005;162(1):71–8.

    Article  Google Scholar 

  24. Casacchia M, Mazza M, Roncone R. Theory of mind, social development and psychosis. Curr Psychiatry Rep. 2004;6:183–9.

    Article  Google Scholar 

  25. Kurtz MM, Donato J, Rose J. Crystallized verbal skills in schizophrenia: relationship to neurocognition symptoms, and functional status. Neuropsychology. 2011;25(6):784–91.

    Article  Google Scholar 

  26. Rocca P, Castagna F, Marchiaro L, Rasetti R, Rivoira E, Bogetto F. Neuropsychological correlates of reality distortion in schizophrenic patients. Psychiatry Res. 2006;145:49–60.

    Article  Google Scholar 

  27. Montemagni C, Rocca P. Assessing cognition and real-world functioning in schizophrenia. J Psychopathol. 2018;24:49–59.

    Google Scholar 

  28. Cavallaro R, Bechi M, Spangaro M. Targeting social cognition to improve functional outcome of patients with schizophrenia: clinical evidence. Journal of Psychopathol. 2018;24:88–92.

    Google Scholar 

  29. Demetriou EA, Song CY, Park SH, Pepper KL, Naismith SL, Hermens DF, Hickie IB, Thomas EE, Norton A, White D, Guastella AJ. Autism, early psychosis, and social anxiety disorder: a transdiagnostic examination of executive function cognitive circuitry and contribution to disability. Transl Psychiatry. 2018;8(1):200. https://doi.org/10.1038/s41398-018-0193-8.

  30. Uher R, Zwicker A. Etiology in psychiatry: embracing the reality of poly-gene-environmental causation of mental illness. World Psychiatry. 2017;16:121–9.

    Article  Google Scholar 

  31. De Lacy N, King BH. Revisiting the relationship between autism and schizophrenia: toward an integrated neurobiology. Annu Rev Clin Psychol. 2013;9:555–87.

    Article  Google Scholar 

  32. Couture SM, Penn DL, Losh M, Adolphs R, Hurley R, Piven J. Comparison of social cognitive functioning in schizophrenia and high functioning autism: more convergence than divergence. Psychol Med. 2010;40(4):569–79.

    Article  Google Scholar 

  33. Wheeler AL, Voineskos AN. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci. 2014;8:653.

    Article  Google Scholar 

  34. Watson DR, Anderson JME, Bai F, Barrett SL, McGinnity TM, Mulholland CC, Rushe TM, Cooper SJ. A voxel based morphometry study investigating brain structural changes in first episode psychosis. Behav Brain Res. 2012;227(1):91–9.

    Article  Google Scholar 

  35. Addington J, Saeedi H, Addington D. The course of cognitive functioning in first episode psychosis: changes over time and impact on outcome. Schizophr Res. 2005;78:35–43.

    Article  Google Scholar 

  36. Cauda F, Costa T, Nani A, Fava L, Palermo S, Bianco F, Duca S, Tatu K, Keller R. Are schizophrenia, autistic, and obsessive spectrum disorders dissociable on the basis of neuroimaging morphological findings?: a voxel-based meta-analysis. Autism Res. 2017;10(6):1079–95.

    Article  Google Scholar 

  37. Cauda F, Nani A, Costa T, Palermo S, Tatu K, Manuello J, Duca S, Fox PT, Keller R. The morphometric co-atrophy networking of schizophrenia, autistic and obsessive spectrum disorders. Hum Brain Mapp. 2018;39(5):1898–928.

    Article  Google Scholar 

  38. Bicks LK, Koike H, Akbarian S, Morishita H. Prefrontal cortex and social cognition in mouse and man. Front Psychol. 2015;6:1805.

    Article  Google Scholar 

  39. Cauda F, Costa T, Torta DM, Sacco K, D’agata F, Duca S, Vercelli A. Meta-analytic clustering of the insular cortex: characterizing the meta-analytic connectivity of the insula when involved in active tasks. Neuroimage. 2012;62:343–55.

    Article  Google Scholar 

  40. Cauda F, Geda E, Sacco K, D’agata F, Duca S, Geminiani G, Keller R. Grey matter abnormality in autism spectrum disorder: an activation likelihood estimation metaanalysis study. J Neurol Neurosurg Psychiatry. 2011;82:1304–13.

    Article  Google Scholar 

  41. Klein TA, Ullsperger M, Danielmeier C. Error awareness and the insula: links to neurological and psychiatric diseases. Front Hum Neurosci. 2013;7:14.

    Article  Google Scholar 

  42. Vercelli U, Diano M, Costa T, Nani A, Duca S, Geminiani G, Cauda F. Node detection using high-dimensional fuzzy parcellation applied to the insular cortex. Neural Plast. 2016;2016:1938292.

    Article  Google Scholar 

  43. Wylie KP, Tregellas JR. The role of the insula in schizophrenia. Schizophr Res. 2010;123:93.

    Article  Google Scholar 

  44. Uddin QL, Menon V. The anterior insula in autism: under-connected and under-examined. Neurosci Biobehav Rev. 2009;33:1198–203.

    Article  Google Scholar 

  45. Jou RJ, Jackowski AP, Papademetris X, Rajeevan N, Staib LH, Volkmar FR. Diffusion tensor imaging in autism spectrum disorders: preliminary evidence of abnormal neural connectivity. Aust N Z J Psychiatry. 2011;45:153–62.

    Article  Google Scholar 

  46. Jou RJ, Mateljevic N, Kaiser MD, Sugrue DR, Volkmar FR, Pelphrey KA. Structural neural phenotype of autism: preliminary evidence from a diffusion tensor imaging study using tract-based spatial statistics. AJNR Am J Neuroradiol. 2011;32:1607–13.

    Article  Google Scholar 

  47. Radua J, Via E, Catani M, Mataix-Cols D. Voxel-based meta-analysis of regional white-matter volume differences in autism spectrum disorder versus healthy controls. Psychol Med. 2011;41:1539–50.

    Article  Google Scholar 

  48. Cattaneo L, Rizzolatti G. The mirror neuron system. Arch Neurol. 2009;66:557–60.

    Article  Google Scholar 

  49. Keller R, Bugiani S, Fantin P, Pirfo E. Mirror neurons and autism. Giornale Italiano Psicopatologia. 2011;17:404–12.

    Google Scholar 

  50. Kilner JM, Friston KJ, Frith CD. The mirror-neuron system: a Bayesian perspective. Neuroreport. 2007;18:619–23.

    Article  Google Scholar 

  51. Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169–92.

    Article  Google Scholar 

  52. Spencer MD, Moorhead TW, Lymer GK, Job DE, Muir WJ, Hoare P, Johnstone EC. Structural correlates of intellectual impairment and autistic features in adolescents. NeuroImage. 2006;33:1136–44.

    Article  Google Scholar 

  53. Cheon KA, Kim YS, Oh SH, Park SY, Yoon HW, Herrington J, Schultz RT. Involvement of the anterior thalamic radiation in boys with high functioning autism spectrum disorders: a diffusion tensor imaging study. Brain Res. 2011;1417:77–86.

    Article  Google Scholar 

  54. Wible CG. Hippocampal temporal-parietal junction interaction in the production of psychotic symptoms: a framework for understanding the schizophrenic syndrome. Front Hum Neurosci. 2012;6:180.

    Article  Google Scholar 

  55. Buckholtz JW, Meyer-Lindenberg A. Psychopathology and the human connectome: toward a transdiagnostic model of risk for mental illness. Neuron. 2012;74:990–1004.

    Article  Google Scholar 

  56. McTeague LM, Goodkind MS, Etkin A. Transdiagnostic impairment of cognitive control in mental illness. J Psychiatr Res. 2016;83:37–46.

    Article  Google Scholar 

  57. Iturria-Medina Y, Evans AC. On the central role of brain connectivity in neurodegenerative disease progression. Front Aging Neurosci. 2015;7:90.

    Article  Google Scholar 

  58. Raj A, Kuceyeski A, Weiner M. A network diffusion model of disease progression in dementia. Neuron. 2012;73:1204–15.

    Article  Google Scholar 

  59. Voytek B, Knight RT. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol Psychiatry. 2015;77:1089–97.

    Article  Google Scholar 

  60. Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012;73:1216–27.

    Article  Google Scholar 

  61. Lionel AC, Tammimies K, Vaags AK, Rosenfeld JA, Ahn JW, Scherer SW. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Hum Mol Genet. 2014;23:2752–68.

    Article  Google Scholar 

  62. Cochran DM, Fallon D, Hill M, Frazier JA. The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings. Harv Rev Psychiatry. 2013;21:219–47.

    Article  Google Scholar 

  63. Humble MB, Uvnas-Moberg K, Engstrom I, Bejerot S. Plasma oxytocin changes and anti-obsessive response during serotonin reuptake inhibitor treatment: a placebo controlled study. BMC Psychiatry. 2013;13:344.

    Article  Google Scholar 

  64. Romano A, Tempesta B, Micioni Di Bonaventura MV, Gaetani S. From autism to eating disorders and more: the role of oxytocin in neuropsychiatric disorders. Front Neurosci. 2015;9:497.

    Google Scholar 

  65. Shin NY, Park HY, Jung WH, Park JW, Yun JY, Jang JH, Kwon JS. Effects of oxytocin on neural response to facial expressions in patients with schizophrenia. Neuropsychopharmacology. 2015;40(8):1919–27.

    Article  Google Scholar 

  66. Strauss GP, Keller WR, Koenig JI, Gold JM, Frost KH, Buchanan RW. Plasma oxytocin levels predict social cue recognition in individuals with schizophrenia. Schizophr Res. 2015;162:47.

    Article  Google Scholar 

  67. Baribeau DA, Anagnostou E. A comparison of neuroimaging findings in childhood onset schizophrenia and autism spectrum disorder: a review of the literature. Front Psych. 2013;4:175.

    Google Scholar 

  68. Cauda F, Costa T, Nani A, Fava L, Palermo S, Bianco F, Keller R. Are schizophrenia, autistic, and obsessive spectrum disorders dissociable on the basis of neuroimaging morphological findings?: a voxel-based meta-analysis. Autism Res. 2017;10(6):1079–95.

    Article  Google Scholar 

  69. Cauda F, Costa T, Palermo S, D’agata F, Diano M, Bianco F, Keller R. Concordance of white matter and gray matter abnormalities in autism spectrum disorders: a voxel-based meta-analysis study. Hum Brain Map. 2014;35:2073–98.

    Article  Google Scholar 

  70. Cauda F, Geda E, Sacco K, D’agata F, Duca S, Geminiani G, Keller R. Grey matter abnormality in autism spectrum disorder: an activation likelihood estimation meta-analysis study. J Neurol Neurosurg Psychiatry. 2011;82:1304–13.

    Article  Google Scholar 

  71. Cheung C, Yu K, Fung G, Leung M, Wong C, Li Q, McAlonan G. Autistic disorders and schizophrenia: related or remote? An anatomical likelihood estimation. PLoS One. 2010;5:e12233.

    Article  Google Scholar 

  72. Chisholm K, Lin A, Abu-Akel A, Wood SJ. The association between autism and schizophrenia spectrum disorders: a review of eight alternate models of co-occurrence. Neurosci Biobehav Rev. 2015;55:173–83.

    Article  Google Scholar 

  73. King BH, Lord C. Is schizophrenia on the autism spectrum? Brain Res. 2011;1380:34–41.

    Article  Google Scholar 

  74. Pathania M, Davenport EC, Muir J, Sheehan DF, Lopez-Domenech G, Kittler JT. The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Transl Psychiatry. 2014;4:e374.

    Article  Google Scholar 

  75. Matsuo J, Kamio Y, Takahaski H, Ota M, Teraishi T, Hori H, Nagashima A, Takej R, Higuchi T, Motohashi N, Kunugi H. Autistic-like traits in adult patients with mood disorders and schizophrenia. PLoS One. 2015;10(4):e0122711.

    Article  Google Scholar 

  76. Owen MJ, O’Donovan M, Thapar A, Craddock N. Neurodevelopmental hypothesis of schizophrenia. Br J Psychiatry. 2011;198(3):173–5.

    Article  Google Scholar 

  77. Di Gregorio E, Riberi E, Belligni EF, Biamino E, Spielmann M, Ala U, Calcia A, Bagnasco I, Carli D, Gai G, Giordano M, Guala A, Keller R, Mandrile G, Arduino C, Maffè A, Naretto VG, Sirchia F, Sorasio L, Ungari S, Zonta A, Zacchetti G, Talarico F, Pappi P, Cavalieri S, Giorgio E, Mancini C, Ferrero M, Brussino A, Savin E, Gandione M, Pelle A, Giachino DF, De Marchi M, Restagno G, Provero P, Silengo MC, Grosso E, Buxbaum JD, Pasini B, De Rubeis S, Brusco A, Ferrero GB. CNVs analysis in a cohort of isolated and syndromic DD/ID reveals novel genomic disorders, position effects and candidate disease genes. Clin Genet. 2017;92(4):415–22.

    Article  Google Scholar 

  78. Biamino E, Di Gregorio E, Belligni EF, Keller R, Riberi E, Gandione M, Pappi P. A novel 3q29 deletion associated with autism, intellectual disability, psychiatric disorders, and obesity. Am J Med Genet B Neuropsychiatr Genet. 2016;171(2):290–9.

    Article  Google Scholar 

  79. Schneider M, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the international consortium on brain and behavior in 22q1.2 deletion syndrome. Am J Psychiatr. 2014;171(6):627–39.

    Article  Google Scholar 

  80. Jonas RK, Montojo CA, Bearden CE. The 22q11.2 deletion syndrome as a window into complex neuropsychiatric disorders over the lifespan. Biol Psychiatry. 2015;75(5):351–60.

    Article  Google Scholar 

  81. Bulent H, Duygu H, Kenan D. 22q11.2 deletion syndrome: current perspective. Appl Clin Genet. 2015;8:123–32.

    Google Scholar 

  82. Fung WLA, et al. Practical guidelines for managing adults with 22q11.2 deletion syndrome. Genet Med. 2015;17(8):599–609.

    Article  Google Scholar 

  83. Burnside RD. 22q11.21 deletion syndromes: a review of proximal, central and distal deletions and their associated features. Cytogenet Genome Res. 2015;146:89–99.

    Article  Google Scholar 

  84. Bertran M, Tagle FP, Irarrazaval YM. Manifestaciones psiquiatricas del sindrome de delecion 22q11.2: una revision de la literatura. Neurologia. 2015;33(2):121–8.

    Article  Google Scholar 

  85. Ford TC, Nibbs R, Crewther DP. Glutamate/GABA1 ratio is associated with the psychosocial domain of autistic and schizotypal traits. PLoS One. 2017;12:e0181961.

    Article  Google Scholar 

  86. LeBlanc JJ, Fagiolini M. Autism: a “critical period” disorder? Neural Plast. 2011;2011:921680.

    Article  Google Scholar 

  87. Wenger TL, et al. The role of mGluR Copy Number Variation in Genetic and environmental forms of syndromic autism spectrum disorder. Sci Rep. 2016;6:19372.

    Article  Google Scholar 

  88. Connor MC, Crawford CB, Akbarian S. White matter neuron alterations in schizophrenia and related disorders. Int J Dev Neurosci. 2011;29(3):325–34.

    Article  Google Scholar 

  89. Nagakawa Y, Chiba K. Involvement of neuroinflammation during brain developmental in social cognitive deficits in autism spectrum disorder and schizophrenia. J Pharmacol Exp Ther. 2016;358:504–15.

    Article  Google Scholar 

  90. Larsen KM, Dzafic I, Siebner RH, Garrido MI. Alteration of functional brain architecture in 22q11.2 deletion syndrome—insights into susceptibility for psychosis. Neuroimage. 2019;190:154–71.

    Article  Google Scholar 

  91. Hong H, Kim BS, Im HI. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int Neurourol J. 2016;20:S2–7.

    Article  Google Scholar 

  92. Volk DW. Role of microglia disturbances and immune-related marker abnormalities in cortical circuitry dysfunction in schizophrenia. Neurobiol Dis. 2017;99:58–65.

    Article  Google Scholar 

  93. Caspi A, Houts RM, Belsky DW, Goldman-Mellor SJ, Harrington H, Israel S, et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin Psychol Sci. 2014;2:119–37.

    Article  Google Scholar 

  94. Davenport EC, Szulc BR, Drew J, Taylor J, Morgan T, Higgs NF, López-Doménech G, Kittler JT. Autism and schizophrenia-associated CYFIP1 regulates the balance of synaptic excitation and inhibition. Cell Rep. 2019;26(8):2037–2051.e6. https://doi.org/10.1016/j.celrep.2019.01.092.

    Article  Google Scholar 

  95. Politte LC, McDougle CJ. Atypical antipsychotics in the treatment of children and adolescents with pervasive developmental disorders. Psychopharmacology (Berl). 2014;231(6):1023–36.

    Article  Google Scholar 

  96. Bertelli MO, Rossi M, Keller R, Lassi S. Update on psychopharmacology for autism spectrum disorders. Adv Ment Health Intellect Disabil. 2016;10(1):6–26.

    Article  Google Scholar 

  97. Skolnick SD, Greig NH. Microbes and monoamines: potential neuropsychiatric consequences of dysbiosis. Trends Neurosci. 2019;42(3):151–63. https://doi.org/10.1016/j.tins.2018.12.005. Epub 2019 Feb 19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keller, R., Bari, S. (2019). Psychosis and ASD. In: Keller, R. (eds) Psychopathology in Adolescents and Adults with Autism Spectrum Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-26276-1_4

Download citation

Publish with us

Policies and ethics