Skip to main content

Organic Matter Management in Cereals Based System: Symbiosis for Improving Crop Productivity and Soil Health

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 29

Abstract

The world population is increasing to the 7 billion marks and until the mid-2030s, the planet can expect to shoulder annual additions of 50–70 million more peoples leading to an issue of poverty, food security and access to fertile and healthy soils. Crop productivity, soil fertility and health are continuously declining due to removal of essential plant nutrients from the soils under cereals-based system in the current changing climate scenario. Cereals (wheat, maize, rice etc.) crops provide humankind with more nourishment than any other food class and nearly half of the total caloric requirement globally. As cereals are exhaustive (decline soil fertility) crops and therefore their continuous growth without balanced nutrients management decline crop productivity, soil fertility and soil health. Sustainable soil management (SSM) practices not only increase crop productivity but also improve soil fertility, health and sustainability. Widespread adoption of SSM practices generates multiple socio-economic benefits for both smallholder farmers and large-scale agricultural producers. We concluded from the review that integrated nutrients management (INM) improve soil health for sustained crop productivity in cereal based system. The concept of INM is the combined application of chemical fertilizers [nitrogenous fertilizers (urea, ammonium sulphate etc.), phosphatic fertilizers (Di-ammonium phosphate, single super phosphate etc.), and potash fertilizers (sulphate of potash, muriate of potash etc.) zinc etc.) plus incorporation of different organic matter sources [(1) animal-based sources (poultry manure, cattle manure, sheep manure, goat manure etc.) and (2) plant-based sources e.g. vegetables residues (onion, garlic etc.), cereals residues (wheat, maize, rice etc.), legumes/pulses residues (chickpea, faba bean, mungbean, cowpea etc.) and tree residues (peach, pepper mulberry etc.)] into the soil along with application of biofertilizers (beneficial microbes) improve soil fertility and health, crop growth and yield, growers income and sustainability. We concluded that INM practices which are one of the best SSM practices are recommended in exhaustive cereal-based system to decrease soil degradation due to nutrients losses and increase soil and crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya CL (2002) Integrated input management for sustainable crop production in rainfed agro-ecosystem. J Indian Soc Soil Sci 50:398–413

    Google Scholar 

  • Adekiya A, Agbede T, Aboyeji C, Dunsin O, Simeon V (2019) Effects of biochar and poultry manure on soil characteristics and the yield of radish. Sci Hortic 243:457–463

    Article  Google Scholar 

  • Ahmed M, Ahmed AG, Mohamed MH, Tawfik M (2011) Integrated effect of organic and biofertilizers on wheat productivity in new reclaimed sandy soil. Res J Agric Biol Sci 7(1):105–114

    Google Scholar 

  • Ai C, Liang GQ, Sun JW, He P, Tang SH, Yang SH, Zhou W, Wang XB (2015) The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Biol Fert Soils 51:465–477

    Article  CAS  Google Scholar 

  • Akhtar M, Yaqub M, Iqbal Z, Ashraf MY, Akhter J, Hussain F (2010) Improvement in yield and nutrient uptake by co-cropping of wheat and chickpea. Pak J Bot 42(6):4043–4049

    Google Scholar 

  • Akhtar MJ, Asghar HN, Shahzad K, Arshad M (2009) Role of plant growth promoting Rhizobacteria applied in combination with compost and mineral fertilizers to improve growth and yield of Wheat (Triticum aestivum). Pak J Bot 41:381–390

    Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA working paper no. 12-03. Food and Agriculture Organization of the United Nations, Rome, 2012

    Google Scholar 

  • Ali A, Hameed S, Imran A, Iqbal M, Iqbal J et al (2016) Functional characterization of a soybean growth stimulator Bradyrhizobium sp. strain SR-6 showing acylhomoserine lactone production. FEMS Microbiol Ecol. http://www.ncbi.nlm.nih.gov/pubmed/27242370

  • Al-Kaisi MM, Yin X, Licht MA (2005) Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric Ecosyst Environ 105:635–647

    Article  CAS  Google Scholar 

  • Amanullah J, Stewart BA (2013) Dry matter partitioning, growth analysis and water use efficiency response of oats (Avena sativa L.) to excessive nitrogen and phosphorus application. J Agr Sci Tech 15:479–489

    Google Scholar 

  • Amanullah H (2016a) Influence of organic and inorganic nitrogen on grain yield and yield components of hybrid rice in Northwestern Pakistan. Rice Sci 23(6):326–333

    Article  Google Scholar 

  • Amanullah, Khan I, Jan A, Jan MT, Khalil SK, Shah Z, Afzal M (2015) Compost and nitrogen management influence productivity of spring maize (Zea mays L.) under deep and conventional tillage systems in Semi-arid regions. Comm Soil Sci Plant Anal 46(12):1566–1578

    Article  CAS  Google Scholar 

  • Amanullah I (2016b) Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Sci 23(2):78–87

    Article  Google Scholar 

  • Amanullah (2011) Rice and Phosphorus. Rice Plus 4:4

    Google Scholar 

  • Amanullah (2014) Source and rate of nitrogen application influence agronomic N-use efficiency and harvest index in maize (Zea mays L) genotypes. Maydica 59:80–89

    Google Scholar 

  • Amanullah (2015) The role of beneficial microbes (Biofertilizers) in increasing crop productivity and profitability. EC Agr 2.6 (2015):504

    Google Scholar 

  • Amanullah (2016) Rate and timing of nitrogen application influence partial factor productivity and agronomic NUE of maize (Zea mays L.) planted at low and high densities on calcareous soil in northwest Pakistan. J Plant Nutr 39(5):683–690

    Article  CAS  Google Scholar 

  • Amanullah (2017) Integrated use of organic carbon, plant nutrients and bio-fertilizers is key to improve field crops productivity under arid and semiarid climates. In: FAO (2017) Proceedings of the global symposium on soil organic carbon 2017. Food and Agriculture Organization of the United Nations, Rome, Italy, pp 480–81

    Google Scholar 

  • Amanullah (2018a) Presentation on: best management practices reduce soil pollution and improve health of all in the global symposium on soil pollution held at FAO, Rome, Italy, 2–4 MAY 2018

    Google Scholar 

  • Amanullah (2018b) Presentation as key note speaker on: integrated organic carbon sources and nutrients management: symbiosis for sustainable soil and crop production in changing climate. In: The 1st international conference on: climate change impacts on agriculture and food supply, and soil ecosystems. University of Swabi, 24–26 Apr 2018, Rome, FAO, pp 40. ISBN 978-92-5-130031-2

    Google Scholar 

  • Amanullah, Fahad S (2018) Nitrogen in agriculture-updates. InTech, Rijeka, Croatia

    Google Scholar 

  • Amanullah, Tamraiz S, Iqbal A (2016) Growth and productivity response of hybrid rice to application of animal manures, plant residues and phosphorus. Front Plant Sci 7:1440. Available from: https://doi.org/10.3389/fpls.2016.01440

  • Anonymous (2014) http://www.agricorner.com/hybrid-the-new-key-word-in-ricei

  • Bandyopadhyay KK, Mishra AK, Ghosh PK, Hati KM (2010) Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil Tillage Res 110:115–125

    Article  Google Scholar 

  • Bayer C, Mielniczuk J, Martin-Neto L, Ernani PR (2002) Stocks and humification degree of organic matter fractions as affected by no-tillage on a subtropical soil. Plant Soil 238:133–140

    Article  CAS  Google Scholar 

  • Benbi DK, Brar K, Toor AS, Singh P, Singh H (2012) Soil carbon pools under poplar-based agroforestry, rice-wheat, and maize-wheat cropping systems in semi-arid India. Nutr Cycl Agroecosyst 92:107–118

    Article  CAS  Google Scholar 

  • Bharali A, Baruah KK, Bhattacharyya P, Gorh D (2017) Integrated nutrient management in wheat grown in a northeast India soil: impacts on soil organic carbon fractions in relation to grain yield. Soil and Till Res 168:81–91

    Article  Google Scholar 

  • Bhattacharyya R, Chandra S, Singh RD, Kundu S, Srivastva AK, Gupta HS (2001) Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat soybean rotation. Soil Till Res 94(2):386–396

    Article  Google Scholar 

  • Bhattacharyya R, Pandey AK, Gopinath KA, Mina BL, Bisht JK, Bhatt JC (2016) Fertilization and crop residue addition impacts on yield sustainability under a rainfed maize-wheat system in the Himalayas. Proc Natl Acad Sci India Sec B: Biol Sci 86:21–32

    Article  CAS  Google Scholar 

  • Bi L, Xia J, Liu K, Li D, Yu X (2014) Effect of long term chemical fertilization on trends of rice yield and nutrient use efficiency under double rice cultivation in subtropical China. Plant Soil Environ. 60:537–543

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK (2001) Inoculation techniques of growth promoting rhizobia for improving nitrogen uptake and yield of lowland rice. Ban Rice J 10:61–65

    Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Am J Soil Sci Soc 64:1644–1650

    Article  CAS  Google Scholar 

  • Biswas PP, Sharma PD (2008) A new approach for estimating fertilizer response ratio-the Indian scenario. Indian J Ferti 4:59–62

    Google Scholar 

  • Cabrera-Bosquet L, Albrizio R, Araus JL, Nogues S (2009) Photosynthetic capacity of field-grown durum wheat under different N availabilities: a comparative study from leaf to canopy. Environ Exp Bot 67:145–152

    Article  CAS  Google Scholar 

  • Cai ZJ, Wang BR, Xu MG, Zhang HM, He XH, Zhang L, Gao SD (2015) Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J Soils Sediment 15:260–270

    Article  CAS  Google Scholar 

  • Camarsa G, Toland JSJ, Hudson T, Nottingham S, Rosskopf N, Thévignot C (2014) Life and soil protection. Life and the environment. European Commission, DG Environment, pp 65

    Google Scholar 

  • Carter MR, Stewart BA (1996) Structure and organic matter storage in agriculture soils. CRC Press, Boca Raton, Fl

    Google Scholar 

  • Cederlund HE, Wessén K, Enwall CM, Jones J, Juhanson M, Pell L, Philippot S, Hallin (2014) Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Appl Soil Ecol 84:62–68

    Article  Google Scholar 

  • CGIAR (2018). http://maize.org/why-maize/. Accessed on 17 July 2018

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of green waste biochar as a soil amendment. Soil Res 45(8):629–634

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chien SH, Prochnow LI, Tu S, Snyder CS (2011) Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review. Nutr Cycl Agroecosyst. https://doi.org/10.1007/s10705-010-9390-4

    Article  Google Scholar 

  • Choudhary M, Panday SC, Meena VS, Singh S, Yadav RP, Mahanta D, Mondal T, Mishra PK, Bisht JK, Pattanayak A (2018) Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-himalayas. Agric Ecosyst Environ 257:38–46

    Article  Google Scholar 

  • Chuan L, He P, Jin J, Li S, Grant C, Xu X, Qiu S, Zhao S, Zhou W (2013) Estimating nutrient uptake requirements for wheat in China. Field Crops Res 146:96–104

    Article  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H et al (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • CIMMYT (2018). https://www.cimmyt.org/new-publications-the-importance-of-wheat-in-the-global-food-supply-to-a-growing-population/. Accessed on 17 July 2018

  • Constable G (1985) Grasslands and Tundra. Planet Earth. Time life books. p 19. ISBN 0-8094-4520-4

    Google Scholar 

  • Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM (2016) Quantifying global soil carbon losses in response to warming. Nature 540:104–110

    Article  CAS  PubMed  Google Scholar 

  • Curtis BC, Rajaraman S, MacPherson HG (2002) Bread Wheat. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Das A, Sharma RP, Chattopadhyaya N, Rakshit R (2014) Yield trends and nutrient budgeting under a long term (28 years) nutrient management in rice-wheat cropping system under subtropical climatic condition. Plant Soil Environ 60:351–357

    Article  Google Scholar 

  • Davidson EA, Suddick EC, Rice CW, Prokopy LS (2015) More food, low pollution (Mo Fo Lo Po): a grand challenge for the 21st century. J Environ Qual 44:305–311

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Trumbore S, Amundson R (2000) Biogeochemistry: soil warming and organic carbon content. Nature 408:789–790

    Article  CAS  PubMed  Google Scholar 

  • Dilshad M, Lone M, Jilani G, Malik MA, Yousaf M, Khalid R et al (2010) Integrated plant nutrient management (IPNM) on maize under rainfed condition. Pak J Nutr 9(9):896–901

    Article  Google Scholar 

  • Dorosh PA (2009) Price stabilization, international trade and national cereal stocks: world price shocks and policy response in South Asia. Food Sec 1:137–149

    Article  Google Scholar 

  • Dou T, Xiao C, Shindell DT, Liu JP, Ming J, Qin D (2012) The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model. Atmos Chem Phys 12:7995–8007. https://doi.org/10.5194/acp-12-7995-2012

    Article  CAS  Google Scholar 

  • EC (2010) The EU Nitrates Directive. Publication Office of the European Union

    Google Scholar 

  • Fageria NK (2003) Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low-land rice. Commun Soil Sci Plant Anal 34:259–270

    Article  CAS  Google Scholar 

  • Fageria NK (2007) Yield physiology of rice. J Plant Nutr 30:843–879

    Article  CAS  Google Scholar 

  • Fageria NK (2012) Role of soil organic matter in maintaining sustainability of cropping systems. Commun Soil Sci Plant Anal 43(16):2063–2113

    Article  CAS  Google Scholar 

  • Fan M, Shen J, Yuan L, Jiang R, Chen X, Davies WJ, Zhang F (2011) Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J Exp Bot 63:13–24

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Zhan L, Ok YS, Gao B (2018) Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J Ind Eng Chem 57:15–21

    Article  CAS  Google Scholar 

  • FAO (2016a) Soil and pulses: symbiosis for life. FAO, Rome-Italy. ISBN 978-92-5-109501-0

    Google Scholar 

  • FAO (2017) Unlocking the potential of soil organic carbon. FAO/IPCC. ISBN 978-92-5-109759-5

    Google Scholar 

  • FAO (2018a) Soil pollution: a hidden reality. FAO, Rome, pp 142. ISBN 978-92-5-130505-8

    Google Scholar 

  • FAO (2018b) Be the solution to soil pollution. FAO, Rome, p 32

    Google Scholar 

  • FAO and ITPS (2016) Voluntary guidelines for sustainable soil management (VGSSM), Rome, Italy

    Google Scholar 

  • FAO and ITPS (2017) Global assessment of the impact of plant protection products on soil functions

    Google Scholar 

  • FAO Outlook (2018) Biannual report on global food markets. ISBN 978-92-5-130768-7

    Google Scholar 

  • FAO (2012) FAOSTAT, Food supply. Cited 10 Oct 2013. http://faostat.fao.org/site/345/default.aspx

  • FAO (2016) World food situation: FAO cereal supply and demand brief. United Nations, Food and Agriculture Organization, Rome, Italy. Retrieved 17 July 2018

    Google Scholar 

  • FAO (2018). www.fao.org/docrep/006/y4011e/y4011e04.htm. Accessed on 17 July 2018

  • FAOSTAT (2014) Crops/world total/wheat/area harvested/2014. United Nations, FAO, Statistics Division

    Google Scholar 

  • FAOSTAT (2017) Crops/regions/world list/production quantity (pick lists), rice (paddy), 2014. UN FAO, Corporate Statistical Database

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O/’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T (2016) Mineral vs. Organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Frontiers in Microbiol 7:1–16. https://doi.org/10.3389/fmicb.2016.01446

    Article  Google Scholar 

  • Frumin G, Gildeeva I (2014) Eutrophication of water bodies—a global environmental problem. Russ J Gen Chem 84(13):2483–2488

    Article  CAS  Google Scholar 

  • Fulton TM, Buckler CS, Kissel RA (2011) The teacher-friendly guide to the evolution of maize. Paleontological Research Institution, Ithaca, NY

    Google Scholar 

  • Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mäder P, Stolze M, Smith P, Scialabba NE-H, Niggli U (2012) Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci USA 109:18226–18231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge T, Yuan H, Zhu H, Wu X, Nie S, Liu C, Tong C, Wu J, Brookes P (2012) Biological carbon assimilation and dynamics in a flooded rice-soil system. Soil Biol Biochem 48:39–46

    Article  CAS  Google Scholar 

  • Gentile R, Vanlauwe B, Chivenge P, Six J (2008) Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biol Biochem 40:2375–2384

    Article  CAS  Google Scholar 

  • Ghosh PK, Mohanty M, Bandyopadhyay KK, Painuli DK, Misra AK (2006) Growth, competition, yields advantage and economics in soybean/pigeonpea intercropping system in semi–arid tropics of India: II. Effect of nutrient management. Field Crop Res 96:90–97

    Article  Google Scholar 

  • Gomiero T, Pimentel D, Paoletti M (2011) Environmental impact of different agricultural management practices: conventional versus organic agriculture. Crit Rev Plant Sci 30:95–124

    Article  Google Scholar 

  • Grobelak A (2016) Organic soil amendments in the phytoremediation process. In: Phytoremediation: management of environmental contaminants 4:21–39. Springer. https://doi.org/10.1007/978-3-319-41811-7_2

    Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010a) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Ni Y, Huang J (2010b) Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of Lucerne in acid purplish soil in China. Trop Grasslands 44:109–114

    Google Scholar 

  • Han SH, Young J, Hwang J, Kima SB, Parka B (2016) The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system. For Sci Technol 12:137–143. https://doi.org/10.1080/21580103.2015.1135827

    Article  Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils. Adv Agric 85:221–268

    Article  CAS  Google Scholar 

  • Henri F, Laurette NN, Annette D, John Q, Wolfgang M, Franc¸ois-Xavier E et al (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic sols of Cameroon. Afr J Microbiol Res 2:171–178

    Google Scholar 

  • Hidayatullah A, Jan A, Shah Z (2013) Residual effect of organic nitrogen sources applied to rice on the subsequent wheat crop. Int J Agron Plant Prod 4:620–631

    Google Scholar 

  • Hossain M (1997) Rice supply and demand in Asia: a socioeconomic and biophysical analysis. In: Teng S, Kropff MJ, Ten Berge HFM, Dent JB, Lansigan FP (eds) Proceedings of the second international symposium on systems approaches for agricultural development. Vol 1: Applications of systems approaches at the farm and regional levels. International Rice Research Institute, Los Banos, pp 263–279

    Chapter  Google Scholar 

  • Huang B, Sun WX, Zhao YC, Zhu J, Yang RQ, Zou Z, Ding F, Su JP (2007) Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma 139:334–336

    Article  CAS  Google Scholar 

  • Hussain N, Abbasi T, Abbasi SA (2016) Vermicomposting transforms allelopathic parthenium into a benign organic fertilizer. J Environ Manage 180:180–189

    Article  CAS  PubMed  Google Scholar 

  • Imran, Amanullah (2018) Global impact of climate change on water, soil resources and threat towards food security: evidence from Pakistan. Adv Plants Agric Res 8(5):350‒355

    Google Scholar 

  • Imranuddin, Arif M, Khalid S, Nadia, Saddamullah, Idrees M, Amir M (2017) Effect of seed priming, nitrogen levels and moisture regimes on yield and yield components of wheat. Pure Appl Bio 6(1):369–377. https://doi.org/10.19045/bspab.2017.60036

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change (IPCC)

    Google Scholar 

  • Janzen HH, Campbell CA, Ellert BH (1997) Soil organic matter dynamics and their relationship to soil quality. Dev Soil Sci 25:277–291

    Google Scholar 

  • Jin J, Sun K, Liu W, Li S, Peng X, Yang Y, Han L, Du Z, Wang X (2018) Isolation and characterization of biochar-derived organic matter fractions and their phenanthrene sorption. Environ Pollut 1(236):745–753

    Article  CAS  PubMed  Google Scholar 

  • Kannaiyan S (2002) Biotechnology of biofertilizers: Alpha Science Int’l Ltd. UK, pp 1–375

    Google Scholar 

  • Kanter D (2018) Nitrogen pollution: a key building block for addressing climate change. Climatic change, pp 1–11. https://doi.org/10.1007/s10584-017-2126-6

    Article  Google Scholar 

  • Kaushik M, Bishnoi N, Sumeriya H (2012) Productivity and economics of wheat as influenced by inorganic and organic sources of nutrients. Ann plant Soil Res 14(1):61–64

    Google Scholar 

  • Keeney D (1997) What goes around comes around–The nitrogen issues cycle. Third int. Dahlia Greidinger sym. on fertilization and the environment. pp 8–20

    Google Scholar 

  • Kiss I (2018) Applied studies in agribusiness and commerce. https://ageconsearch.umn.edu/bitstream/104650/2/14_Kiss_Signification_Apstract.pdf. Accessed on 17 July 2018

  • Kong XB, Lal R, Li BG, Li KJ (2014) Crop yield response to soil organic carbon stock over long-term fertilizer management in Huang-Huai-Hai Plains of China. Agricult Res 3:246–256

    Article  CAS  Google Scholar 

  • Kumar U, Shahid M, Tripathi R, Mohanty S, Kumar A, Bhattacharyya P, Lal B, Gautam P, Raja R, Panda BB, Jambhulkar NN, Shukla AK, Nayak AK (2017) Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecol Indic 73:536–543

    Article  CAS  Google Scholar 

  • Kumar R, Singh CM (1997) Crop yields and economics under fertilizer resource constraints along with different FYM application in maize-wheat cropping sequence. J Hill Res 10:103–107

    Google Scholar 

  • Kumar V, Shivay YS (2010) Integrated nutrient management: an ideal approach for enhancing agricultural production and productivity. Indian J Ferti 6(5):41–57

    CAS  Google Scholar 

  • Kumari G, Thakur SK, Kumar N, Mishra B (2013) Long term effect of fertilizers, manure and lime on yield sustainability and soil organic carbon status under maize (Zea mays)–wheat (Triticum aestivum) cropping system in Alfisols. Indian J Agron 58(2):152–158

    Google Scholar 

  • Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–207. https://doi.org/10.1002/ldr.696

    Article  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc 363:815–830

    Article  CAS  Google Scholar 

  • Lal R (2009) Challenges and opportunities in soil organic matter research. Eur J Soil Sci 60:158–169

    Article  CAS  Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–5895

    Article  CAS  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liu Y, Wang J, Yang L, Zhang S, Xu C, Ding W (2017) Soil acidification aggravates the occurrence of bacterial wilt in South China. Front Microbiol 8:703

    Google Scholar 

  • Li J, Wu X, Gebremikael MT, Wu H, Cai D, Wang B, Li B, Zhang J, Li Y, Xi J (2018) Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system. PloS one13(4):e0195144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Zhou F, Hu G, Shao S, He H, Zhang W, Zhang X, Li L (2019) Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching. Geoderma 333:35–42

    Article  CAS  Google Scholar 

  • Lubkowski K, Grzmil B (2007) Controlled release fertilizers. Polish J Chem Technol 9(4):83–84. https://doi.org/10.2478/v10026-007-0096-6

    Article  Google Scholar 

  • Lv MR, Li ZP, Che YP, Han FX, Liu M (2011) Soil organic C, nutrients, microbial biomass, and grain yield of rice (Oryza sativa L.) after 18 years of fertilizer application to an infertile paddy soil. Biol Fertil Soils 47:777–783

    Article  CAS  Google Scholar 

  • MacEwan RJ (2007) Soil health for Victoria’s agriculture- context, terminology and concepts. MIS 07898 final report. Department of Primary Industries Research Victoria, Bendigo, State of Victoria, March 2007

    Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytol 2(10):42–54

    Google Scholar 

  • Majumdar B, Mandal B, Bandhyopadhyay P, Gangopadhyay A, Mani P, Kundu A et al (2008) Organic amendments influence soil organic carbon pools and crop productivity in nineteen year old rice-wheat agro-ecosystem. Soil Sci Soc Am J 72:1–11

    Article  CAS  Google Scholar 

  • Mamathashree CM, Shilpha SM, Pradeep (2017) Nutrient mining by selected cereal crops and strategies to sustain soil productivity. Int J Curr Microbiol App Sci 6(12):2932–2941

    Article  Google Scholar 

  • Mandal KG, Misra AK, Hati KM (2000) Effect of combination of NPK and FYM on growth, yield and agronomic efficiency of soybean (Glycine max) in Vertisol. Environ Ecol 18(1):207–209

    Google Scholar 

  • Manna MC, Swarup A, Wanjari RH, Ravankar NH, Mishra B, Saha MN, Singh YV, Shahi DK, Swarup PA (2005) Long term effect of fertilizer and manure application on soil organic carbon storage, soil quality, and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Res 93:264–280

    Article  Google Scholar 

  • Marisa Buxbaum (2018) Chemical fertilizer issues. https://insteading.com/blog/chemical-fertilizers/. Accessed on 17 July 2018

  • Matsumoto T, Yamano T (2009) Soil fertility, fertilizer and the maize green revolution in East Africa. Policy working paper, WPS5158, Japan’s National Graduate Institute for Policy Studies and the World Bank Development Research Group Agriculture and Rural Development

    Google Scholar 

  • Meena BP, Biswas A, Singh M, Chaudhary R, Singh A, Das H, Patra A (2019) Long-term sustaining crop productivity and soil health in maize–chickpea system through integrated nutrient management practices in Vertisols of central India. Field Crops Res 232:62–76

    Article  Google Scholar 

  • Merante P, Dibari C, Ferrise R, Sanchez B, Iglesias A, Lesschen JP, Kuikman P, Yeluripati J, Smith P, Bindi M (2017) Adopting soil organic carbon management practices in soils of varying quality: implications and perspectives in Europe. Soil Tillage Res 165:95–106

    Article  Google Scholar 

  • Mi W, Sun Y, Xia S, Zhao H, Mi W, Brookes PC, Liu Y, Wu L (2018) Effect of inorganic fertilizers with organic amendments on soil chemical properties and rice yield in a low-productivity paddy soil. Geoderma 320:23–29

    Article  CAS  Google Scholar 

  • Mucheru-Muna MW, Mugendi D, Kung’u J, Mugwe J, Bationo A (2007) Effects of organic and mineral fertilizer inputs on maize yield and soil chemical properties in a maize cropping system in Meru South District, Kenya. Agrofor Syst 69:189–197

    Article  Google Scholar 

  • Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324:714. Available from: https://doi.org/10.1111/nyas.12540

    Article  PubMed  Google Scholar 

  • Naher UA, Othman R, Shamsuddin ZH, Saud HM, Ismail MR, Rahim KA (2011) Effect of root exuded specific sugars on biological nitrogen fixation and growth promotion in rice (Oryza sativa). Aust J Crop Sci 5(10):1210–1217

    CAS  Google Scholar 

  • Naher UA, Panhwar QA, Radziah O, Razi IM, Zulkarami B (2016) Biofertilizer as a supplement of chemical fertilizer for yield maximization of rice. J Agric Food Dev 2:16–22

    Article  Google Scholar 

  • Naher UA, Radziah O, Halimi MS, Shamsuddin ZH, Mohd Razi I (2009) Influence of root exudate carbon compounds of three rice genotypes on rhizosphere and endophytic diazotrophs. Trop Agric 32:209–223

    Google Scholar 

  • Narayan S, Kanth RH, Narayan R, Khan FA, Singh P, Rehman SU (2014) Effect of integrated nutrient management practices on yield of potato. Potato J 40(1)

    Google Scholar 

  • Nguyen TH, Kennedy I, Roughley R, Deaker R (eds) (2001) Quality control protocols for inoculant biofertiliser production for rice crops. AusAID CARD project workshop, Hanoi, Vietnam

    Google Scholar 

  • Nyalemegbe KK, Oteng JW, Brempong SA (2009) Integrated organic- inorganic fertilizer management for rice production on the Vertisols of the Accra plains of ghana. West Africa J Appl Ecol 16:23–33

    Google Scholar 

  • Nyamadzawo G, Wuta M, Nyamangara J, Smith JL, Rees RM, (2014) Nitrous oxide and methane emissions from cultivated seasonal wetland (dambo) soils with inorganic, organic and integrated nutrient management. Nutr. Cycl. Agroecosyst. 100:161–175

    Article  CAS  Google Scholar 

  • Pakinson R, Gibbs P, Burchett S, Misselbrook T (2004) Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Bioresource Tech 91(2):171–178

    Google Scholar 

  • Pande A, Das N, Kumar B, Rinu K, Trivedi P (2008) Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World J Microbiol Biotechnol 24:97–102

    Article  CAS  Google Scholar 

  • Panhwar QA, Ali A, Naher UA, Memon MY (2019) Fertilizer management strategies for enhancing nutrient use efficiency and sustainable wheat production. In: Organic Farming, Elsevier. pp 17–39

    Chapter  Google Scholar 

  • Panhwar QA, Naher UA, Radziah O, Shamshuddin J, Razi IM (2014) Bio-fertilizer, ground magnesium limestone and basalt applications may improve chemical properties of Malaysian acid sulfate soils and rice growth. Pedosphere 24(6):827–835

    Article  Google Scholar 

  • Panhwar QA, Othman R, Rahman ZA, Meon S, Ismail MR (2012) Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. Afr J Biotechnol 11(11):2711–2719

    CAS  Google Scholar 

  • Panwar AS (2008) Effect of integrated nutrient management in maize (Zea mays)- mustard (Brassica campestris var. toria) cropping system in mid hills altitude. Indian J Agricult Sci 78(1):27–31

    Google Scholar 

  • Patil VC (2008) Declining factor productivity and improving nutrient use efficiency. In: Paper presented in national symposium on “New paradigms in agronomic research” held at Navsari, Gujarat during Nov 1921

    Google Scholar 

  • Paris Agreement (2015) Retrieved at: http://www.climatefocus.com/sites/default/files/20151228%20COP%2021%20briefing%20FIN.pdfi

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Change 14:53–67

    Article  Google Scholar 

  • Peng S, Biswas JC, Ladha JK, Prasad G, Chen Y (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agron J 94:925–929

    Article  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:S-88–S-105

    Article  Google Scholar 

  • Plaza C, Hernández D, García-Gil JC, Polo A (2004) Microbial activity in pig slurry amended soils under semiarid conditions. Soil Biol Biochem 36:1577–1585. https://doi.org/10.1016/j.soilbio.2004.07.017

    Article  CAS  Google Scholar 

  • Powlson DS, Bhogal A, Chambers BJ, Coleman K, MacDonald AJ, Goulding KWT, Whitmore AP (2012) The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study. Agric Ecosyst Environ 146:23–33

    Article  Google Scholar 

  • Ram S, Singh V, Sirari P (2015) Effects of 41 years of application of inorganic fertilizers and farm yard manure on crop yields soil quality and sustainable yield index under a rice-wheat cropping system on Mollisols of north India. Commun Soil Sci Plant Anal 47:179–193

    Article  CAS  Google Scholar 

  • Ranum P, Peña-Rosas JP, Garcia-Casal MN (2014) Global maize production, utilization, and consumption. Ann N Y Acad Sci 1312(1):105–112. https://doi.org/10.1111/nyas.12396

    Article  PubMed  Google Scholar 

  • Raven PH, Johnson GB (1995) In: Mills CJ (ed) Understanding Biology, 3rd edn. WMC Brown, p 536. ISBN 0-697-22213-6

    Google Scholar 

  • Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nat Plants 2:1–8. https://doi.org/10.1038/NPLANT.2015.221

    Article  Google Scholar 

  • Roba TB (2018) Review on: the effect of mixing organic and inorganic fertilizer on productivity and soil fertility. Open Acc Library J 5:e4618. https://doi.org/10.4236/oalib.1104618

    Article  Google Scholar 

  • Peña-Bautista RJ, Nayeli Hernandez-Espinosa N, Jones JM, Guzmán C, Braun HJ (2017) CIMMYT series on carbohydrates, wheat, grains, and health: wheat-based foods: their global and regional importance in the food supply, nutrition, and health. AACC Int 62(5):231–249. https://doi.org/10.1094/CFW-62-5-0231

    Article  Google Scholar 

  • Sanyal SK, Majumdar K, Singh VK (2014) Nutrient management in Indian agriculture with special reference to nutrient mining. J Indian Soc Soil Sci 62(4):307–325

    Google Scholar 

  • Savci S (2012) Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1:287–292. https://doi.org/10.1016/j.apcbee.2012.03.047

    Article  CAS  Google Scholar 

  • Shah A, Shah SM, Mohammad W, Shafi M, Nawaz H, Shehzadi S, Amir M (2010) Effect of integrated use of organic and inorganic N sources on wheat yield. Sarhad J Agric 26:559–563

    Google Scholar 

  • Sharma GK, Mishra VN, MarutiSankar GR, Patil SK, Srivastava LK, Thakur DS, Srinivasarao CH (2015) Soil test based optimum fertilizer doses for attaining yield targets of rice under midland alfisols of eastern India. Commun Soil Sci Plant Anal 46(17):2177–2190

    Article  CAS  Google Scholar 

  • Sharma NK, Singh RJ, Mandal D, Kumar A, Alam NM, Keesstra S (2017) Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maize-wheat rotation of Himalaya. India Agric Ecosyst Environ 247:43–53

    Article  Google Scholar 

  • Shaviv A (2000) Advances in controlled release of fertilizers. Adva Agron 71:1–49. https://doi.org/10.1016/S0065-2113(01)71011-5

    Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Du Veiller E, Reynolds M, Muricho G (2013) Crops that feed the world. 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec 5:291

    Article  Google Scholar 

  • Singh Brar B, Singh J, Singh G, Kaur G (2015) Effects of long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize-wheat rotation. Agronomy 5(2):220–238

    Article  CAS  Google Scholar 

  • Singh G, Jalota SK, Singh Y (2007) Manuring and residue management effects on physical properties of a soil under the rice-wheat system in Punjab. India Soil Tillage Res 94:229–238

    Article  Google Scholar 

  • Singh M, Wanjari RH (2013) Measures to sustain and restore declined productivity in Alfisols under Long Term Fertilizer Experiments. Indian J Ferti 9(2):24–32

    Google Scholar 

  • Singh YV, Singh SK (2014) Fertilizer prescription for targeted yield of rice (Oryza sativa L. Var. Saryu-52) in an Inceptisol of Varanasi. Indian J Ecol 42(2):282–285

    Google Scholar 

  • Tao G, Tian S, Cai M, Xie G (2008) Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523

    Article  CAS  Google Scholar 

  • Tarkalson DD, Payero JO, Hergert GW, Cassman KG (2006) Acidification of soil in a dry land winter wheat-sorghum/ corn-fallow rotation in the Semiarid U.S great plains. Plant Soil 283:367–379

    Article  CAS  Google Scholar 

  • Tian K, Zhao Y, Xu X, Hai N, Huang B, Deng W (2015) Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agric Ecosyst Environ 204:40–50

    Article  CAS  Google Scholar 

  • Tilman D (1998) The greening of the green revolution 396(19):211–212

    Article  CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirol-Padre A, Ladha JK (2004) Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon. Soil Sci Soc Ame J 68(3):969–978

    Article  CAS  Google Scholar 

  • To H, Grafton RQ (2015) Oil prices, biofuels production and food security: past trends and future challenges. Food Sec 7:323–336

    Article  Google Scholar 

  • Torres-Sallan G, Schulte RP, Lanigan GJ, Byrne KA, Reidy B, Simo I, Six J, Creamer RE (2018) Clay illuviation provides a long-term sink for C sequestration in subsoils. Sci Rep 7:45635

    Google Scholar 

  • Tsiafouli MA, Thébault E, Sgardelis SP, de Ruiter PC, van der Putten WH, Birkhofer K, Hemerik, L, de Vries FT, Bardgett RD, Brady MV, Bjornlund L, Jørgensen HB, Christensen S, Hertefeldt TD, Hotes S, Gera Hol WH, Frouz J, Liiri M, Mortimer SR, Setälä H, Tzanopoulos J, Uteseny K, Pižl, V, Stary J, Wolters V, Hedlund K (2016) Intensive agriculture reduces soil biodiversity across Europe. Glob Change Biol 21:973–985

    Article  PubMed  Google Scholar 

  • Tuomisto HL, Hodge ID, Riordan P, Macdonald DW (2012) Does organic farming reduce environmental impacts? a meta-analysis of European research. J Environ Manage 112:309–320

    Article  CAS  PubMed  Google Scholar 

  • United Nations world population prospects report (2017). https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html

  • Van DSC, Van Middelkoop JC, Ehlert PAI (2017) Changes in soil phosphorus pools of grasslands following 17yrs of balanced application of manure and fertilizer. Soil Use Manage 33:2–12

    Article  Google Scholar 

  • Venkatesh MS, Hazra KK, Ghosh PK, Khuswah BL et al (2017) Long–term effect of crop rotation and nutrient management on soil–plant nutrient cycling and nutrient budgeting in Indo-Gangetic plains of India. Agron Soil Sci, Arch. https://doi.org/10.1080/03650340.2017.1320392

    Book  Google Scholar 

  • Wailare AT, Kesarwani A (2017) Effect of integrated nutrient management on growth and yield parameters of maize (Zea mays L.) as well as soil physico-chemical properties. Biomed J Sci Tech Res 1(2):294–299. https://doi.org/10.26717/BJSTR.2017.01.000178

  • Wani PA, Khan MS, Zaidi A (2007) Chromium reduction, plant growth promoting potentials and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Zaidi A, Khan AA, Khan MS (2005) Effect of phorate on phosphate solubilization and indole acetic acid (IAA) releasing potentials of rhizospheric microorganisms. Ann Plant Prot Sci 13:139–144

    Google Scholar 

  • Watson C, Atkinson D, Gosling P, Jackson L, Rayns F (2002) Managing soil fertility in organic farming systems. Soil Use Manage 18:239–247

    Article  Google Scholar 

  • West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA, Carlson KM, Cassidy ES, Johnston M, MacDonald GK, Ray DK, Siebert S (2014) Leverage points for improving global food security and the environment. Science 345:325–328

    Article  CAS  PubMed  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci Soc Am J 66:1930–1946

    Article  CAS  Google Scholar 

  • Wikipedia (2018). https://en.wikipedia.org/wiki/Poaceae. Accessed on 17 July 2018

  • World Bank Databank (2018). http://databank.worldbank.org/

  • Wu HP, Lai C, Zeng GM, Liang J, Chen J, Xu JJ, Dai J, Li XD, Liu JF, Chen M, Lu LH, Hu L, Wan J (2017) The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Crit Rev Biotechnol 37:754–764

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Li J, Zhu P, Peng C, Wang J, He H, Zhang X (2014) Long-term manure amendments enhance neutral sugar accumulation in bulk soil and particulate organic matter in a mollisol. Soil Biol Biochem 78:45–53

    Article  CAS  Google Scholar 

  • Yadav DS (2008) Long-term effect of nutrient management on soil health and productivity of rice (Oryza sativa)- wheat (Triticum aestivum) system. In: Paper presented in national symposium on “New paradigms in agronomic research” held at Navsari, Gujarat during Nov 1921

    Google Scholar 

  • Yaduwanshi NPS (2003) Substitution of inorganic fertilizers by organic manures and the effect on soil fertility in a rice wheat rotation on reclaimed soil in India. J Agricult Sci 140:161–168

    Article  Google Scholar 

  • Yang B, Xiong Z, Wang J, Xu X, Huang Q, Shen Q (2015) Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice-wheat annual rotation systems in China: a 3-year field experiment. Ecol Eng 81:289–297

    Article  Google Scholar 

  • Yang XY, Ren WD, Sun BH, Zhang SL (2012) Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma 177–178:49–56

    Article  CAS  Google Scholar 

  • Ye G, Lin Y, Liu D, Chen Z, Luo J, Bolan N, Fan J, Ding W (2019) Long-term application of manure over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic Ultisols. Appl Soil Ecol 133:24–33

    Article  Google Scholar 

  • Yousaf M, Li X, Zhang Z, Ren T, Cong R, Ata-Ul-Karim ST, Fahad S, Shah AN, Lu J (2016) Nitrogen fertilizer management for enhancing crop productivity and nitrogen use efficiency in a rice-oilseed rape rotation system in China. Front Plant Sci 7:1496. https://doi.org/10.3389/fpls.2016.01496

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Wu W, Yang P, Li Z, Xiong W, Tang H (2012) Proposing an interdisciplinary and cross-scale framework for global change and food security researches. Agric Ecosyst Environ 156:57–71

    Article  Google Scholar 

  • Yuan J, Sha Z, Hassani D, Zhao Z, Cao L (2017) Assessing environmental impacts of organic and inorganic fertilizer on daily and seasonal greenhouse gases effluxes in rice field. Atmos Environ 155:119–128

    Article  CAS  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528:51–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Lövdahl L, Grip H, Tong Y, Yang X, Wang Q (2009) Effects of mulching and catch cropping on soil temperature, soil moisture and wheat yield on the Loess Plateau of China. Soil Tillage Res 102:78–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amanullah et al. (2019). Organic Matter Management in Cereals Based System: Symbiosis for Improving Crop Productivity and Soil Health. In: Lal, R., Francaviglia, R. (eds) Sustainable Agriculture Reviews 29. Sustainable Agriculture Reviews, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-26265-5_3

Download citation

Publish with us

Policies and ethics