Skip to main content

Sex-, Age-, and Ethnicity-Dependent Variation in Body Composition: Can There Be a Single Cutoff?

  • Chapter
  • First Online:
Frailty and Sarcopenia in Cirrhosis

Abstract

Among all the body compartments, muscle stands as an important prognostic factor in clinical settings. Several factors may determine the body composition variability, such as age, sex, and ethnicity. Muscle mass gradually declines with normal aging, and the rate of decline can be influenced by sex and ethnicity. In general, men have a higher muscularity than women, and the amount of muscle mass differs among the ethnicities (African American > White > Hispanic > Asian). Several body composition analysis techniques can be used for muscle mass assessment. Low muscularity is usually defined as muscle mass below the normative values of a healthy young population or values that are associated with a higher risk for negative outcomes in clinical situations. The association between muscle and adverse health outcomes may be jeopardized if sex, age, and ethnic specific cutoff values are not used to identify low muscularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thibault R, Genton L, Pichard C. Body composition: why, when and for who? Clin Nutr. 2012;31(4):435–47.

    Article  Google Scholar 

  2. Prado CM, Purcell SA, Alish C, et al. Implications of low muscle mass across the continuum of care: a narrative review. Ann Med. 2018:1–19.

    Google Scholar 

  3. Gonzalez MC, Correia M, Heymsfield SB. A requiem for BMI in the clinical setting. Curr Opin Clin Nutr Metab Care. 2017;20(5):314–21.

    Article  Google Scholar 

  4. Wells JC. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab. 2007;21(3):415–30.

    Article  Google Scholar 

  5. Arts IM, Pillen S, Overeem S, et al. Rise and fall of skeletal muscle size over the entire life span. J Am Geriatr Soc. 2007;55(7):1150–2.

    Article  Google Scholar 

  6. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018.

    Google Scholar 

  7. Barbosa-Silva TG, Menezes AM, Bielemann RM, et al. Enhancing SARC-F: improving sarcopenia screening in the clinical practice. J Am Med Dir Assoc. 2016;17(12):1136–41.

    Article  Google Scholar 

  8. Kawakami R, Murakami H, Sanada K, et al. Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatr Gerontol Int. 2015;15(8):969–76.

    Article  Google Scholar 

  9. Shaw SC, Dennison EM, Cooper C. Epidemiology of sarcopenia: determinants throughout the Life course. Calcif Tissue Int. 2017;101(3):229–47.

    Article  CAS  Google Scholar 

  10. Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.

    Article  Google Scholar 

  11. von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle. 2010;1(2):129–33.

    Article  Google Scholar 

  12. Clark P, Denova-Gutierrez E, Ambrosi R, et al. Reference values of Total lean mass, appendicular lean mass, and fat mass measured with dual-energy X-ray absorptiometry in a healthy Mexican population. Calcif Tissue Int. 2016;99(5):462–71.

    Article  CAS  Google Scholar 

  13. Landi F, Calvani R, Tosato M, et al. Age-related variations of muscle mass, strength, and physical performance in community-dwellers: results from the Milan EXPO survey. J Am Med Dir Assoc. 2017;18(1):88 e17–24.

    Article  Google Scholar 

  14. He Q, Heo M, Heshka S, et al. Total body potassium differs by sex and race across the adult age span. Am J Clin Nutr. 2003;78(1):72–7.

    Article  CAS  Google Scholar 

  15. Silva AM, Shen W, Heo M, et al. Ethnicity-related skeletal muscle differences across the lifespan. Am J Hum Biol. 2010;22(1):76–82.

    Article  Google Scholar 

  16. Xiao Z, Guo B, Gong J, et al. Sex- and age-specific percentiles of body composition indices for Chinese adults using dual-energy X-ray absorptiometry. Eur J Nutr. 2017;56(7):2393–406.

    Article  Google Scholar 

  17. Wulan SN, Westerterp KR, Plasqui G. Ethnic differences in body composition and the associated metabolic profile: a comparative study between Asians and Caucasians. Maturitas. 2010;65(4):315–9.

    Article  CAS  Google Scholar 

  18. Gallagher D, Visser M, De Meersman RE, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol (1985). 1997;83(1):229–39.

    Article  CAS  Google Scholar 

  19. Alkahtani SA. A cross-sectional study on sarcopenia using different methods: reference values for healthy Saudi young men. BMC Musculoskelet Disord. 2017;18(1):119.

    Article  Google Scholar 

  20. Bosy-Westphal A, Muller MJ. Identification of skeletal muscle mass depletion across age and BMI groups in health and disease--there is need for a unified definition. Int J Obes. 2015;39(3):379–86.

    Article  CAS  Google Scholar 

  21. Ebadi M, Montano-Loza AJ. Insights on clinical relevance of sarcopenia in patients with cirrhosis and sepsis. Liver Int. 2018;38(5):786–8.

    Article  Google Scholar 

  22. Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101.

    Article  Google Scholar 

  23. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56.

    Article  Google Scholar 

  24. Carey EJ, Lai JC, Wang CW, et al. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl. 2017;23(5):625–33.

    Article  Google Scholar 

  25. Martin L, Birdsell L, Macdonald N, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–47.

    Article  Google Scholar 

  26. Prado CM, Lieffers JR, McCargar LJ, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35.

    Article  Google Scholar 

  27. Benjamin J, Shasthry V, Kaal CR, et al. Characterization of body composition and definition of sarcopenia in patients with alcoholic cirrhosis: a computed tomography based study. Liver Int. 2017;37(11):1668–74.

    Article  Google Scholar 

  28. Derstine BA, Holcombe SA, Ross BE, et al. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep. 2018;8(1):11369.

    Google Scholar 

  29. van der Werf A, Langius JAE, de van de Schueren MAE, et al. Percentiles for skeletal muscle index, area and radiation attenuation based on computed tomography imaging in a healthy Caucasian population. Eur J Clin Nutr. 2018;72(2):288–96.

    Google Scholar 

  30. Belarmino G, Gonzalez MC, Sala P, et al. Diagnosing sarcopenia in male patients with cirrhosis by dual-energy X-ray absorptiometry estimates of appendicular skeletal muscle mass. JPEN J Parenter Enteral Nutr. 2018;42(1):24–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzalez, M.C., Xiao, J., Disi, I.R. (2020). Sex-, Age-, and Ethnicity-Dependent Variation in Body Composition: Can There Be a Single Cutoff?. In: Tandon, P., Montano-Loza, A. (eds) Frailty and Sarcopenia in Cirrhosis. Springer, Cham. https://doi.org/10.1007/978-3-030-26226-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26226-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26225-9

  • Online ISBN: 978-3-030-26226-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics