Technological Paradigms and Digital Eras pp 149-167 | Cite as
Platform—A Space for Project Design and an Interface Between Reality and Virtuality
Chapter
First Online:
- 188 Downloads
Abstract
The first and second digital ages are articulated around the concepts of virtualisation of reality and materialisation of virtuality, with a view to transforming from implicit to explicit links between the different components and knowledge of design and implementation that contribute to the project.
References
- Aliberti A, Bottaccioli L, Cirrincione G, Macii E, Acquaviva A, Patti E (2018) Forecasting short-term solar radiation for photovoltaic energy predictions. In: Proceedings of the 7th conference on smart cities and green ICT systems (SMARTGREENS 2018), Madeira, Portugal, 16–18 Mar, pp 44–53Google Scholar
- Anderson C (2012) Makers: the new industrial revolution. Random House Business Books, LondonGoogle Scholar
- Bochicchio D et al (2010) C# 4. Guida completa per lo sviluppo. Hoepli, MilanoGoogle Scholar
- Brown GZ, Dekay M (2001) Sun, wind & light. Wiley, New YorkGoogle Scholar
- Casetta E (2009) Parametri e architettura temporanea: progettare il prototipo. Master Degree thesis, MArch in Architecture, Politecnico di Torino, Academic Year 2010/11, supervisor: Pagani R, co-supervisor: Chiesa GGoogle Scholar
- Chiesa G (2010) Biomimetica, tecnologia e innovazione per l’architettura. Celid, TorinoGoogle Scholar
- Chiesa G (2013) M.E.T.R.O. (Monitoring energy and technological real time data for optimization) innovative responsive conception for city futures. PhD thesis, Politecnico di Torino, TorinoGoogle Scholar
- Chiesa G (2015) Paradigmi ed ere digitali. Il dato come parametro di innovazione in architettura e urbanistica. Accademia University Press, TorinoGoogle Scholar
- Chiesa G (2017) Biomimetics. Technology and innovation for architecture. Celid, TorinoGoogle Scholar
- Chiesa G (2019a) Environmental design strategies in different density-urban contexts. TECHNE 17:183–190Google Scholar
- Chiesa G (2019b) Optimisation of envelope insulation levels and resilience to climate changes. In: De Joanna P, Passaro A (eds) Sustainable technologies for the enhancement of the natural landscape and of the built environment. Luciano Editore, Napoli, pp 305–338Google Scholar
- Chiesa G, Grosso M (2015) Accessibilità e qualità ambientale del paesaggio urbano. La matrice microclimatica di sito come strumento di progetto. Ri-Vista 13(1):78–91Google Scholar
- Chiesa G, Grosso M (2019) A parametric tool for assessing optimal location of buildings according to environmental criteria. In: Sayigh A (ed) Sustainable building for a cleaner environment. Springer, Cham, pp 115–130CrossRefGoogle Scholar
- Chiesa G, Huberman N, Pearlmutter D, Grosso M (2017a) Summer discomfort reduction by direct evaporative cooling in Southern Mediterranean areas. Energy Procedia 111:588–598CrossRefGoogle Scholar
- Chiesa G, Simonetti M, Ballada G (2017b) Potential of attached sunspaces in winter season comparing different technological choices in Central and Southern Europe. Energy Build 138:377–395CrossRefGoogle Scholar
- Chiesa G, Grosso M, Acquaviva A, Makhlouf B, Tumiatti A (2018) Insulation, building mass and airflows—provisional and multi-variable analysis. SMC—Sustainable Mediterranean Construction 8:36–40Google Scholar
- Chiesa G, Acquaviva A, Grosso M, Bottaccioli L, Floridia M, Pristeri E, Sanna EM (2019a) Parametric optimization of window-to-wall ratio for passive buildings adopting a scripting methodology to dynamic-energy simulation. Sustainability 11:3078. https://doi.org/10.3390/su11113078CrossRefGoogle Scholar
- Chiesa G, Huberman N, Pearlmutter D (2019b) Geo-climatic potential of direct evaporative cooling in the Mediterranean region: a comparison of key performance indicators. Build Environ 151:318–337CrossRefGoogle Scholar
- Devoto G, Oli GC (2009) Devoto-Oli Il vocabolario della lingua Italiana, edizione 2009. Le Monnier, FirenzeGoogle Scholar
- Grosso M (1986) Dinamica delle ombre. Celid, TorinoGoogle Scholar
- Grosso M (2008) Il raffrescamento passivo degli edifici in zone a clima temperato, 2nd edn. Maggioli, Sant’Arcangelo di RomagnaGoogle Scholar
- Grosso G, Acquaviva A, Chiesa G, da Fonseca H, Bibak Sareshkek SS, Padilla MJ (2019) Ventilative cooling effectiveness in office buildings: a parametrical simulation. In Proceedings of the 39th AIVC—7th TightVent & 5th venticool conference—smart ventilation for buildings, Antibes Juan-Les-Pins Conference Centre, France, 18–19 Sept 2018, pp 780–788. ISBN 2-930471-53-2. Available at https://www.aivc.org/download/aivc2018-proceedings.pdf, last view May 2019
- Huberman H, Pearlmutter D, Gal E, Meir IA (2015) Optimizing structural roof form for life-cycle energy efficiency. Energy Build 104:336–349CrossRefGoogle Scholar
- Košir M, Gostiša T, Kristl Z (2018) Influence of architectural building envelope characteristics on energy performance in Central European climatic conditions. J Build Eng 15:278–288CrossRefGoogle Scholar
- Matsukawa S, 000STUDIO (2006) Algorithmic space (9-Tsubo_House). In: Hwang I et al (eds) Verb natures, architecture Boogazine. Actar, BarcelonaGoogle Scholar
- Mayer-Schönberger V, Cukier K (2013) Big data. Una rivoluzione che trasformerà il nostro modo di vivere e già minaccia la nostra libertà. Garzanti, Milano [or (ed) Big data: a revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt, Boston]Google Scholar
- Mitchell WJ (2005) Construction complexity. In: Martens B, Brown A (eds) Computer aided architectural design futures 2005. Springer, Netherlands, pp 41–50CrossRefGoogle Scholar
- Molinari E (2006) In: Onden L (ed) Invenzioni bioispirate. Explora la Tv delle Scienze, Rai Educational, 28 Apr 2006Google Scholar
- Nakano A (2015) Urban weather generator user interface development: towards a usable tool for integrating urban heat island effect within urban design process. M.S. thesis, MIT Building TechnologyGoogle Scholar
- Nakano A, Bueno B, Norford LK, Reinhart C (2015) Urban weather generator—a novel workflow for integrating urban heat island effect within urban design process. Build Simul 2015. http://urbanmicroclimate.scripts.mit.edu/publications.php, last view Dec 2018
- Osello A et al (2013) Multidisciplinary team activity using BIM and interoperability. A Ph.D. course experience at Politecnico di Torino. In: Gambardella C (ed) Heritage architecture and design. XI International Forum Le vie dei Mercanti, Aversa-Capri, 13–15 June 2013. La Scuola di Pitagora editrice, Napoli, pp 880–889Google Scholar
- Osello A, Acquaviva A, Del Giudice M, Patti E, Rapetti N (2016) District information models. The DIMMER project: BIM tools for the urban scale. In: Pagani R, Chiesa G (eds) Urban data. Tools and methods towards the algorithmic city. FrancoAngeli, Milano, pp 231–261Google Scholar
- Pagani R (ed) (2009) BdS 2040—challenge all energy. TAO—Transm Archit Organ 1:24Google Scholar
- Palme M, Inostroza L, Villacreses G, Lonato A, Carrasco C (2017) From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect. Energy Build 145:107–120CrossRefGoogle Scholar
- Perini K, Chokhachian A, Dong S, Auer T (2017) Modeling and simulating urban outdoor comfort: coupling ENVI-Met and TRNSYS by grasshopper. Energy Build 152:373–384CrossRefGoogle Scholar
- Tibbits S et al. (2011) Python101 for Rhinoceros 5. http://www.rhino3d.com/download/IronPython/5.0/RhinoPython101, last view 2013
- Weinberger D (2012) La stanza intelligente. La conoscenza come proprietà della rete. Codice edizioni, Torino [or (ed) (2011) Too big to know: rethinking knowledge now that the facts aren’t the facts, experts are everywhere, and the smartness person in the room is the room. Basic Book, New York]Google Scholar
- http://energyplus.net/, last view Dec 2018
Copyright information
© Springer Nature Switzerland AG 2020