Platform—A Space for Project Design and an Interface Between Reality and Virtuality

  • Giacomo ChiesaEmail author
Part of the PoliTO Springer Series book series (PTSS)


The first and second digital ages are articulated around the concepts of virtualisation of reality and materialisation of virtuality, with a view to transforming from implicit to explicit links between the different components and knowledge of design and implementation that contribute to the project.


  1. Aliberti A, Bottaccioli L, Cirrincione G, Macii E, Acquaviva A, Patti E (2018) Forecasting short-term solar radiation for photovoltaic energy predictions. In: Proceedings of the 7th conference on smart cities and green ICT systems (SMARTGREENS 2018), Madeira, Portugal, 16–18 Mar, pp 44–53Google Scholar
  2. Anderson C (2012) Makers: the new industrial revolution. Random House Business Books, LondonGoogle Scholar
  3. Bochicchio D et al (2010) C# 4. Guida completa per lo sviluppo. Hoepli, MilanoGoogle Scholar
  4. Brown GZ, Dekay M (2001) Sun, wind & light. Wiley, New YorkGoogle Scholar
  5. Casetta E (2009) Parametri e architettura temporanea: progettare il prototipo. Master Degree thesis, MArch in Architecture, Politecnico di Torino, Academic Year 2010/11, supervisor: Pagani R, co-supervisor: Chiesa GGoogle Scholar
  6. Chiesa G (2010) Biomimetica, tecnologia e innovazione per l’architettura. Celid, TorinoGoogle Scholar
  7. Chiesa G (2013) M.E.T.R.O. (Monitoring energy and technological real time data for optimization) innovative responsive conception for city futures. PhD thesis, Politecnico di Torino, TorinoGoogle Scholar
  8. Chiesa G (2015) Paradigmi ed ere digitali. Il dato come parametro di innovazione in architettura e urbanistica. Accademia University Press, TorinoGoogle Scholar
  9. Chiesa G (2017) Biomimetics. Technology and innovation for architecture. Celid, TorinoGoogle Scholar
  10. Chiesa G (2019a) Environmental design strategies in different density-urban contexts. TECHNE 17:183–190Google Scholar
  11. Chiesa G (2019b) Optimisation of envelope insulation levels and resilience to climate changes. In: De Joanna P, Passaro A (eds) Sustainable technologies for the enhancement of the natural landscape and of the built environment. Luciano Editore, Napoli, pp 305–338Google Scholar
  12. Chiesa G, Grosso M (2015) Accessibilità e qualità ambientale del paesaggio urbano. La matrice microclimatica di sito come strumento di progetto. Ri-Vista 13(1):78–91Google Scholar
  13. Chiesa G, Grosso M (2019) A parametric tool for assessing optimal location of buildings according to environmental criteria. In: Sayigh A (ed) Sustainable building for a cleaner environment. Springer, Cham, pp 115–130CrossRefGoogle Scholar
  14. Chiesa G, Huberman N, Pearlmutter D, Grosso M (2017a) Summer discomfort reduction by direct evaporative cooling in Southern Mediterranean areas. Energy Procedia 111:588–598CrossRefGoogle Scholar
  15. Chiesa G, Simonetti M, Ballada G (2017b) Potential of attached sunspaces in winter season comparing different technological choices in Central and Southern Europe. Energy Build 138:377–395CrossRefGoogle Scholar
  16. Chiesa G, Grosso M, Acquaviva A, Makhlouf B, Tumiatti A (2018) Insulation, building mass and airflows—provisional and multi-variable analysis. SMC—Sustainable Mediterranean Construction 8:36–40Google Scholar
  17. Chiesa G, Acquaviva A, Grosso M, Bottaccioli L, Floridia M, Pristeri E, Sanna EM (2019a) Parametric optimization of window-to-wall ratio for passive buildings adopting a scripting methodology to dynamic-energy simulation. Sustainability 11:3078. Scholar
  18. Chiesa G, Huberman N, Pearlmutter D (2019b) Geo-climatic potential of direct evaporative cooling in the Mediterranean region: a comparison of key performance indicators. Build Environ 151:318–337CrossRefGoogle Scholar
  19. Devoto G, Oli GC (2009) Devoto-Oli Il vocabolario della lingua Italiana, edizione 2009. Le Monnier, FirenzeGoogle Scholar
  20. Grosso M (1986) Dinamica delle ombre. Celid, TorinoGoogle Scholar
  21. Grosso M (2008) Il raffrescamento passivo degli edifici in zone a clima temperato, 2nd edn. Maggioli, Sant’Arcangelo di RomagnaGoogle Scholar
  22. Grosso G, Acquaviva A, Chiesa G, da Fonseca H, Bibak Sareshkek SS, Padilla MJ (2019) Ventilative cooling effectiveness in office buildings: a parametrical simulation. In Proceedings of the 39th AIVC—7th TightVent & 5th venticool conference—smart ventilation for buildings, Antibes Juan-Les-Pins Conference Centre, France, 18–19 Sept 2018, pp 780–788. ISBN 2-930471-53-2. Available at, last view May 2019
  23. Huberman H, Pearlmutter D, Gal E, Meir IA (2015) Optimizing structural roof form for life-cycle energy efficiency. Energy Build 104:336–349CrossRefGoogle Scholar
  24. Košir M, Gostiša T, Kristl Z (2018) Influence of architectural building envelope characteristics on energy performance in Central European climatic conditions. J Build Eng 15:278–288CrossRefGoogle Scholar
  25. Matsukawa S, 000STUDIO (2006) Algorithmic space (9-Tsubo_House). In: Hwang I et al (eds) Verb natures, architecture Boogazine. Actar, BarcelonaGoogle Scholar
  26. Mayer-Schönberger V, Cukier K (2013) Big data. Una rivoluzione che trasformerà il nostro modo di vivere e già minaccia la nostra libertà. Garzanti, Milano [or (ed) Big data: a revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt, Boston]Google Scholar
  27. Mitchell WJ (2005) Construction complexity. In: Martens B, Brown A (eds) Computer aided architectural design futures 2005. Springer, Netherlands, pp 41–50CrossRefGoogle Scholar
  28. Molinari E (2006) In: Onden L (ed) Invenzioni bioispirate. Explora la Tv delle Scienze, Rai Educational, 28 Apr 2006Google Scholar
  29. Nakano A (2015) Urban weather generator user interface development: towards a usable tool for integrating urban heat island effect within urban design process. M.S. thesis, MIT Building TechnologyGoogle Scholar
  30. Nakano A, Bueno B, Norford LK, Reinhart C (2015) Urban weather generator—a novel workflow for integrating urban heat island effect within urban design process. Build Simul 2015., last view Dec 2018
  31. Osello A et al (2013) Multidisciplinary team activity using BIM and interoperability. A Ph.D. course experience at Politecnico di Torino. In: Gambardella C (ed) Heritage architecture and design. XI International Forum Le vie dei Mercanti, Aversa-Capri, 13–15 June 2013. La Scuola di Pitagora editrice, Napoli, pp 880–889Google Scholar
  32. Osello A, Acquaviva A, Del Giudice M, Patti E, Rapetti N (2016) District information models. The DIMMER project: BIM tools for the urban scale. In: Pagani R, Chiesa G (eds) Urban data. Tools and methods towards the algorithmic city. FrancoAngeli, Milano, pp 231–261Google Scholar
  33. Pagani R (ed) (2009) BdS 2040—challenge all energy. TAO—Transm Archit Organ 1:24Google Scholar
  34. Palme M, Inostroza L, Villacreses G, Lonato A, Carrasco C (2017) From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect. Energy Build 145:107–120CrossRefGoogle Scholar
  35. Perini K, Chokhachian A, Dong S, Auer T (2017) Modeling and simulating urban outdoor comfort: coupling ENVI-Met and TRNSYS by grasshopper. Energy Build 152:373–384CrossRefGoogle Scholar
  36. Tibbits S et al. (2011) Python101 for Rhinoceros 5., last view 2013
  37. Weinberger D (2012) La stanza intelligente. La conoscenza come proprietà della rete. Codice edizioni, Torino [or (ed) (2011) Too big to know: rethinking knowledge now that the facts aren’t the facts, experts are everywhere, and the smartness person in the room is the room. Basic Book, New York]Google Scholar
  38., last view Dec 2018

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dipartimento di Architettura e Design (DAD)Politecnico di TorinoTurinItaly

Personalised recommendations