Advertisement

Scripting and Parametric CAD Modelling for Performance-Driven Design

  • Giacomo ChiesaEmail author
Chapter
  • 182 Downloads
Part of the PoliTO Springer Series book series (PTSS)

Abstract

Parametric and algorithmic scripts and mass-customization solutions are perfect instruments for applying and innovating the requirement-driven approach which was developed in the 60s and 70s (e.g. Ciribini in I componenti nel “performance design”. Politecnico di Torino, Torino, Ciribini 1970). This technological method, which is antithetical to the typological approach, allows for performance evaluation and integration during the different stages of the design process (es. Grosso in Progettazione ecocompatibile dell’architettura. Esselibri, Napoli, pp 307–336, 2005; Chiesa and Grosso in Sustainable building for a cleaner environment. Springer, Cham, pp 285–296, Chiesa and Grosso 2019b). At the same time, it can guarantee a good flexibility and a high quality of design.

References

  1. Abbagnano N (1961) Dizionario di filosofia. UTET, TorinoGoogle Scholar
  2. Alexander C (1964) Notes on the synthesis of form. Harvard University Press, CambridgeGoogle Scholar
  3. Alexander C (1965) A city is not a tree. Archit Forum 122(1):58–62Google Scholar
  4. Allen E (2005) How buildings work. The natural order of architecture, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  5. Atkinson RD (2004) The past and future of America’s economy: Long waves of innovation that power cycles of growth. Edward Elgar, Cheltenham, UKGoogle Scholar
  6. Beckers B, Masset L (2011) Heliodon version 2.7-3. Heliodon 2 documentation. Accessible at http://heliodon.net/heliodon/index.html. Last view Jan 2019
  7. Bocco A, Cavaglià G (2008) Cultura tecnologica dell’architettura. Pensieri e parole, prima dei disegni. Carocci, RomaGoogle Scholar
  8. Bosia D (ed) (2013) L’opera di Giuseppe Ciribini. FrancoAngeli, MilanoGoogle Scholar
  9. Carrara G, Fioravanti A, Loffreda G, Trento A (2014) Conoscere collaborare progettare. Gangemi, RomaGoogle Scholar
  10. Casetta E (2009) Parametri e architettura temporanea: progettare il prototipo. Master Degree Thesis, MArch in Architecture, Politecnico di Torino, Academic Year 2010/11, Supervisor: R. Pagani, co-Supervisor: G. ChiesaGoogle Scholar
  11. Cavaglià G, Ceragioli G, Foto M, Maggi PN, Matteoli L, Ossola F (1975) Industrializzazione per programmi. Strumenti e procedure per la definizione dei sistemi di edilizia abitativa. Studi e Ricerche RDB, PiacenzaGoogle Scholar
  12. Celento D (2007) Innovate or Perish. New technologies and architecture’s futures. Harvard Des Mag 27:1–9Google Scholar
  13. Chiesa G (2013b) La città digitale, dai sensori ai modelli: Piattaforme interconnesse per la città del futuro. In: Di Giulio R et al (eds) Strategie di riqualificazione urbana: Rigenerazione e valorizzazione dell’edilizia sociale ad alta densità abitativa del secondo Novecento. Quodlibet, Macerata, pp 110–117Google Scholar
  14. Chiesa G (2016) Model, digital technologies and datization. Toward an explicit design practice. In: Pagani R, Chiesa G (eds) Urban data. Tools and methods towards the algorithmic city. FrancoAngeli, Milano, pp 48–81Google Scholar
  15. Chiesa G, Casetta E (2012) Parametric CAD modelling and scripting for architectural technology (unpublished paper)Google Scholar
  16. Chiesa G, Grosso M (2017a) An environmental and technological approach to architectural programming for school facilities. In: Sayigh A (ed) Mediterranean green buildings & renewable energy. Springer, Amsterdam, pp 701–715Google Scholar
  17. Chiesa G, Grosso M (2017b) Environmental and technological design: a didactical experience towards a sustainable design approach. In: Gambardella C (ed) World heritage and disaster. Knowledge, culture and representation, Le Vie dei Mercanti_XV International Forum. La scuola di Pitagora Editrice, Napoli, pp 944–953Google Scholar
  18. Chiesa G, Grosso M (2019a) A parametric tool for assessing optimal location of buildings according to environmental criteria. In: Sayigh A (ed) Sustainable building for a cleaner environment. Springer, Cham, pp 115–130Google Scholar
  19. Chiesa G, Grosso M (2019b) Meta-design approach to environmental building programming for passive cooling of buildings. In: Sayigh A (ed) Sustainable building for a cleaner environment. Springer, Cham, pp 285–296Google Scholar
  20. Chiesa G, Grosso M, Acquaviva A, Makhlouf B, Tumiatti A (2018a) Insulation, building mass and airflows—provisional and multi-variable analysis. SMC-Sustain Mediter Constr 8:36–40Google Scholar
  21. Chiesa G, Grosso M, Ahmadi M, Bo M, Murano G, Nigra M, Primo E (2018b) Design of indoor climate control passive systems in buildings: experiences for a PhD course. In: Gambardella C (ed) World heritage and knowledge. Representation, restoration, redesign, resilience, Le Vie dei Mercanti_XVI International Forum. Gangemi International, Roma, pp 229–237Google Scholar
  22. Chiesa G, Olivero D, Griffa C (2018c) Bio_Logic Skin. Disegno o Modello comunitario registrato, No. 005510716–0001, EU IPO, European Union Intellectual Property OfficeGoogle Scholar
  23. Chiesa G, Acquaviva A, Grosso M, Bottaccioli L, Floridia M, Pristeri E, Sanna EM (2019) Parametric optimization of window-to-wall ratio for passive buildings adopting a scripting methodology to dynamic-energy simulation. Sustainability 11:30.  https://doi.org/10.3390/su11113078CrossRefGoogle Scholar
  24. Ciribini G (1968) Brevi noti di metodologia della progettazione architettonica. Edizioni quaderni di studio, Politecnico di Torino, TorinoGoogle Scholar
  25. Ciribini G (1970) I componenti nel “performance design”. Politecnico di Torino, TorinoGoogle Scholar
  26. Claudel M, Pedrazzo MM, Suraci N (2016) Raster to vector: towards a live associative model. In: Pagani R, Chiesa G (eds) Urban Data. FrancoAngeli, Milano, pp 106–117Google Scholar
  27. Conole G, Wills S (2013) Representing learning designs—making design explicit and shareable. Educ Media Int 50(1):24–38CrossRefGoogle Scholar
  28. David A, Oppio A (2016) Combining pattern theory with spatial multicriteria analysis for urban planning. The case of a neighborhood renewal in Turin (Italy). In: Pagani R, Chiesa G (eds) Urban data. FrancoAngeli, Milano, pp 121–158Google Scholar
  29. Davies N, Jokiniemi E (2008) Dictionary of architecture and building construction. Elsevier, AmsterdamCrossRefGoogle Scholar
  30. Droege P (2006) The renewable city: a comprehensive guide to an urban revolution. Wiley, ChichesterGoogle Scholar
  31. Eigensatz M, Deuss M, Schiftner A et al (2010) Case studies in cost-optimized paneling of architectural freeform surfaces. In: Ceccato C, Hesselgren L, Pauly M, Pottmann H, Wallner J (eds) (2010) Advances in architectural geometry 2010. Springer, Vienna, pp 49–72CrossRefGoogle Scholar
  32. ESTIA (2017) Dial + Version 2.5 Manuel d’utilisation. Visible at: http://docs.wixstatic.com/ugd/4e84bd_96cc28d2498749d5a963c6fbe29837c1.pdf. Last view Jan 2019
  33. Ferraris M (2003) Ontologia e oggetti sociali. In Floridi L (ed) Linee di Ricerca. SWIF, p 269–309, viewed Jan 2014 <www.swif.it/biblioteca/lr>
  34. Fogel LJ (1964) On the organization of intellect. Ph.D. thesis, UCLA University of California, Los Angeles, California, USAGoogle Scholar
  35. Fogel LJ (1999) Intelligence through simulated evolution: forty years of evolutionary programming. Wiley-Interscience, New YorkzbMATHGoogle Scholar
  36. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New YorkzbMATHGoogle Scholar
  37. Freeman C, Perez C (1988) Structural crises of adjustment: business cycles and investment behaviour. In: Dosi G et al (eds) Technical change and economic theory. Printer, London, pp 38–66Google Scholar
  38. Grosso M (2005) Valutazione dei caratteri energetici ambientali nel metaprogetto. In: Grosso M, Peretti G, Piardi S, Scudo G (eds) Progettazione ecocompatibile dell’architettura. Esselibri, Napoli, pp 307–336Google Scholar
  39. https://www.ladybug.tools/. Last view Jan 2019
  40. https://energyplus.net/weather. Last view Jan 2019
  41. Kalay YE (2006) The impact of information technology on design methods, products and practices. Des Stud 27(3):357–380CrossRefGoogle Scholar
  42. Kant I (1787) Kritik der reinen Vernunft (Italian translation (2000) Critical della ragion pura. Laterza, Roma-Bari)Google Scholar
  43. Magnaghi A (ed) (1967) Contenuto e funzione del metaprogetto in architettura. CNR, Politecnico di Torino, AIRE, MilanoGoogle Scholar
  44. Mansfield M (1983) Long waves and technological innovation. Am Econ Rev 73(2):141–145Google Scholar
  45. Matteoli L (2013) Prof. Ing. Giuseppe Ciribini. In: Bosia D (ed) L’opera di Giuseppe Ciribini. FrancoAngeli, Milano, pp 147–150Google Scholar
  46. Medjdoub B, Yannou B (2001) Dynamic space ordering at topological level in space planning. Artif Intell Eng 15:47–60CrossRefGoogle Scholar
  47. Meteotest (2016) Meteonorm global meteorological database v. 7.1—Handbook Part I: Software. Meteotest, Bern, p 32Google Scholar
  48. Olivero D (2017) Maker in architettura: esperimenti di fabbricazione di una Responsive Surface. Master Degree Thesis, MArch in Architecture for the sustainability design, Politecnico di Torino, Academic Year 2017/18, Supervisor: G. Chiesa, co-Supervisor: C. GriffaGoogle Scholar
  49. Oxman R (2006b) Editorial. Special issue of design studies on digital design. Design Studies 27(3):225–227CrossRefGoogle Scholar
  50. Piano R (2002) La responsabilità dell’architetto. Passigli Editori, FirenzeGoogle Scholar
  51. Reid E (1988) Understanding buildings. A multidisciplinary approach. Longman Scientific and Technical, LondonGoogle Scholar
  52. Reigeluth CM, Carr-Chellman AA (2009) Instructional-design theories and models. Building a common knowledge base, vol III. Routledge, New YorkCrossRefGoogle Scholar
  53. Rothenberg J (1989) The nature of modelling. In: Widman LE, Loparo KA, Nielson NR (eds) Artificial intelligence, simulation & modelling. Wiley, New York, pp 75–92Google Scholar
  54. Rutten D (2010) Evolutionary principles applied to problem solving. Accessible at: https://www.grasshopper3d.com/profiles/blogs/evolutionary-principles. Last view Jan 2019
  55. Sennet R (2008) The craftsman. Yale University Press, New HavenGoogle Scholar
  56. Simon HA (1981) The sciences of the artificial. MIT Press, CambridgeGoogle Scholar
  57. Šmihula D (2009) The waves of the technological innovations of the modern age and the present crisis as the end of the wave of the informational technological revolution. Studia Politica Slovaca 1/2009:32–47. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2353600. Last view Apr 2019
  58. Solemma (2016) see https://www.solemma.com/index.html. Last view Jan 2019
  59. Torricelli MC, Del Nord R, Felli P (2001) Materiali e tecnologie dell’architettura. Laterza, Roma-BariGoogle Scholar
  60. Tosoni P (2008) Il gioco paziente. Biagio Gardena e la teoria dei modelli per la progettazione, 2nd edn. Celid, TorinoGoogle Scholar
  61. UNI (1978) Edilizia. Terminologia per requisiti e prestazioni. Verifiche di conformità relative ad elementi, UNI 7867-3:1978. Ente Nazionale Italiano di Unificazione, MilanoGoogle Scholar
  62. UNI (1978) Edilizia. Terminologia per requisiti e prestazioni. Specificazione di prestazione, qualità e affidabilità, UNI 7867-2:1978. Ente Nazionale Italiano di Unificazione, MilanoGoogle Scholar
  63. UNI (1978) Edilizia. Terminologia per requisiti e prestazioni. Nozioni di requisito e di prestazione, UNI 7867-1:1978. Ente Nazionale Italiano di Unificazione, MilanoGoogle Scholar
  64. UNI (1979) Edilizia. Terminologia per requisiti e prestazioni. Qualità ambientale e tecnologica nel processo edilizio, UNI 7867-4:1979. Ente Nazionale Italiano di Unificazione, MilanoGoogle Scholar
  65. UNI (1981) Edilizia. Esigenze dell’utenza finale. Classificazione, UNI 8289:1981. Ente Nazionale Italiano di Unificazione, MilanoGoogle Scholar
  66. UNI (1983) Edilizia residenziale. Sistema tecnologico. Analisi dei requisiti, UNI 8290-2:1983. Ente Nazionale Italiano di Unificazione, MilanoGoogle Scholar
  67. UNI (1999) Edilizia - Terminologia riferita all’utenza, alle prestazioni, al processo edilizio e alla qualità edilizia, UNI 10838:1999. Ente Nazionale Italiano di Unificazione, MilanoGoogle Scholar
  68. UNI (2008) Sostenibilità in edilizia - Esigenze e requisiti di ecocompatibilità dei progetti di edifici residenziali e assimilabili, uffici e assimilabili, di nuova edificazione e ristrutturazione, UNI 11277:2008. Ente Nazionale Italiano di Unificazione, MilanoGoogle Scholar
  69. Vitruvius Pollio M (15 B.C. about) De Architettura [italian edition (2002) Architettura. Biblioteca Universale Rizzoli, Milano]Google Scholar
  70. Weise T (2009) Global optimization algorithms—theory and application, 2nd edn. it-weise.de (self-published), Germany. Available at: http://www.it-weise.de/projects/book.pdf. Last view Jan 2019
  71. Wiener N (1950) The human use of human being. Houghton Mifflin, BostonGoogle Scholar
  72. Woodbury R (2010) Elements of parametric design. Routledge, LondonGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dipartimento di Architettura e Design (DAD)Politecnico di TorinoTurinItaly

Personalised recommendations