Skip to main content

Greedy Algorithm for Maximization of Non-submodular Functions Subject to Knapsack Constraint

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11653))

Included in the following conference series:

Abstract

Although submodular maximization generalizes many fundamental problems in discrete optimization, lots of real-world problems are non-submodular. In this paper, we consider the maximization problem of non-submodular function with a knapsack constraint, and explore the performance of the greedy algorithm. Our guarantee is characterized by the submodularity ratio \(\beta \) and curvature \(\alpha \). In particular, we prove that the greedy algorithm enjoys a tight approximation guarantee of \(\frac{1}{\alpha }\left( 1-e^{-\alpha \beta }\right) \) for the above problem. To our knowledge, it is the first tight constant factor for this problem. In addition, we experimentally validate our algorithm by an important application, the Bayesian A-optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balkanski, E., Singer, Y.: Approximation guarantees for adaptive sampling. In: Proceedings of the Thirty-Fifth International Conference on Machine Learning, pp. 384–393 (2018)

    Google Scholar 

  2. Bettinelli, A., Cacchiani, V., Malaguti, E.: A branch-and-bound algorithm for the knapsack problem with conflict graph. INFORMS J. Comput. 29(3), 457–473 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bian, A., Levy, K.Y., Krause, A., Buhmann, J.M.: Non-monotone continuous DR-submodular maximization: structure and algorithms. In: Proceedings of the Thirty-First International Conference on Neural Information Processing Systems, pp. 486–496 (2017)

    Google Scholar 

  4. Bian, A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of the Thirty-Fourth International Conference on Machine Learning, pp. 498–507 (2017)

    Google Scholar 

  5. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

    Article  MathSciNet  Google Scholar 

  6. Chaloner, K., Verdinelli, I.: Bayesian experimental design: a review. Stat. Sci. 10(3), 273–304 (1995)

    Article  MathSciNet  Google Scholar 

  7. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the radoedmonds theorem. Discrete Appl. Math. 7(3), 251–274 (1984)

    Article  MathSciNet  Google Scholar 

  8. Iyer, R., Bilmes, J.: Submodular optimization with submodular cover and submodular knapsack constraints. In: Proceedings of the Twenty-Sixth International Conference on Neural Information Processing Systems, pp. 2436–2444 (2013)

    Google Scholar 

  9. Iyer, R., Jegelka, S., Bilmes, J.: Curvature and optimal algorithms for learning and minimizing submodular functions. In: Proceedings of the Thirtieth International Conference on Machine Learning, pp. 2742–2750 (2013)

    Google Scholar 

  10. Krause, A., Singh, A., Guestrin, C.: Nearoptimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9(Feb), 235–284 (2008)

    MATH  Google Scholar 

  11. Kuhnle, A., Smith, J.D., Crawford, V.G., Thai, M.T.: Fast maximization of non-submodular, monotonic functions on the integer lattice. In: Proceedings of the Thirty-Fifth International Conference on Machine Learning, pp. 2791–2800 (2018)

    Google Scholar 

  12. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  13. Sakaue, S., Ishihata, M.: Accelerated best-first search with upper-bound computation for submodular function maximization. In: Proceedings of the Thirthy-Second AAAI Conference on Artificial Intelligence, pp. 1413–1421 (2018)

    Google Scholar 

  14. Sakaue, S., Nishino, M., Yasuda, N.: Submodular function maximization over graphs via zero-suppressed binary decision diagrams. In: Proceedings of the Thirthy-Second AAAI Conference on Artificial Intelligence, pp. 1422–1430 (2018)

    Google Scholar 

  15. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Application of submodular optimization to single machine scheduling with controllable processing times subject to release dates and deadlines. INFORMS J. Comput. 28(1), 148–161 (2016)

    Article  MathSciNet  Google Scholar 

  16. Soma, T., Yoshida, Y.: A generalization of submodular cover via the diminishing return property on the integer lattice. In: Proceedings of the Twenty-Eighth International Conference on Neural Information Processing Systems, pp. 847–855 (2015)

    Google Scholar 

  17. Soma, T., Yoshida, Y.: Maximizing monotone submodular functions over the integer lattice. In: Proceedings of the Nineteenth International Conference on Integer Programming and Combinatorial Optimization, pp. 325–336 (2016)

    Chapter  Google Scholar 

  18. Soma, T., Yoshida, Y.: Non-monotone DR-submodular function maximization. In: Proceedings of the Thirthy-First AAAI Conference on Artificial Intelligence, pp. 898–904 (2017)

    Google Scholar 

  19. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)

    Article  MathSciNet  Google Scholar 

  20. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4), 1197–1218 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The first author is supported by Science and Technology Program of Beijing Education Commission (No. KM201810005006). The second author is supported by Natural Science Foundation of Shandong Province of China (No. ZR2017QA010). The third author is supported by National Natural Science Foundation of China (No. 61433012), Shenzhen research grant (KQJSCX20180330170311901, JCYJ20180305180840138 and GGFW2017073114031767). The fourth author is supported by National Natural Science Foundation of China (No. 11531014). The fifth author is supported by National Natural Science Foundation of China (No. 11871081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Liu, B., Wang, Y., Xu, D., Zhang, D. (2019). Greedy Algorithm for Maximization of Non-submodular Functions Subject to Knapsack Constraint. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26176-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26175-7

  • Online ISBN: 978-3-030-26176-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics