Skip to main content

Lower Bounds for the Happy Coloring Problems

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11653))

Included in the following conference series:

Abstract

In this paper, we study the Maximum Happy Vertices and the Maximum Happy Edges problems (MHV and MHE for short). Very recently, the problems attracted a lot of attention and were studied in Agrawal ’17, Aravind et al. ’16, Choudhari and Reddy ’18, Misra and Reddy ’17. Main focus of our work is lower bounds on the computational complexity of these problems. Established lower bounds can be divided into the following groups: NP-hardness of the above guarantee parameterization, kernelization lower bounds (answering questions of Misra and Reddy ’17), exponential lower bounds under the Set Cover Conjecture and the Exponential Time Hypothesis, and inapproximability results. Moreover, we present an \({\mathcal {O}}^*(\ell ^k)\) randomized algorithm for MHV and an \({\mathcal {O}}^*(2^k)\) algorithm for MHE, where \(\ell \) is the number of colors used and k is the number of required happy vertices or edges. These algorithms cannot be improved to subexponential taking proved lower bounds into account.

This research was supported by the Russian Science Foundation (project 16-11-10123).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, A.: On the parameterized complexity of happy vertex coloring. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 103–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78825-8_9

    Chapter  Google Scholar 

  2. Aravind, N.R., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy vertex coloring problems for trees. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 281–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44543-4_22

    Chapter  MATH  Google Scholar 

  3. Aravind, N., Kalyanasundaram, S., Kare, A.S., Lauri, J.: Algorithms and hardness results for happy coloring problems. arXiv preprint arXiv:1705.08282 (2017)

  4. Choudhari, J., Reddy, I.V.: On structural parameterizations of happy coloring, empire coloring and boxicity. In: Rahman, M.S., Sung, W.-K., Uehara, R. (eds.) WALCOM 2018. LNCS, vol. 10755, pp. 228–239. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75172-6_20

    Chapter  MATH  Google Scholar 

  5. Cygan, M., et al.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 1–24 (2016)

    Article  MathSciNet  Google Scholar 

  6. Cygan, M., et al.: Lower bounds for kernelization. Parameterized Algorithms, pp. 523–555. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3_15

    Chapter  Google Scholar 

  7. Cygan, M., et al.: Parameterized Algorithms, vol. 3. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  8. Dell, H., Husfeldt, T., Marx, D., Taslaman, N., Wahlén, M.: Exponential time complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms 10(4), 1–32 (2014)

    Article  MathSciNet  Google Scholar 

  9. Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics (2012)

    Google Scholar 

  10. Dell, H., Melkebeek, D.V.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61(4), 1–27 (2014)

    Article  MathSciNet  Google Scholar 

  11. Diestel, R.: Graph Theory. Springer, Heidelberg (2018)

    MATH  Google Scholar 

  12. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms 11(2), 1–20 (2014)

    Article  MathSciNet  Google Scholar 

  13. Gao, H., Gao, W.: Kernelization for maximum happy vertices problem. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 504–514. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77404-6_37

    Chapter  Google Scholar 

  14. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  Google Scholar 

  15. Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial lower bounds for kernelization. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics (2012)

    Google Scholar 

  16. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  17. Lewis, R., Thiruvady, D., Morgan, K.: Finding happiness: an analysis of the maximum happy vertices problem. Comput. Oper. Res. 103, 265–276 (2019)

    Article  MathSciNet  Google Scholar 

  18. Misra, N., Reddy, I.V.: The parameterized complexity of happy colorings. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 142–153. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78825-8_12

    Chapter  Google Scholar 

  19. Xu, Y., Goebel, R., Lin, G.: Submodular and supermodular multi-labeling, and vertex happiness. CoRR (2016)

    Google Scholar 

  20. Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum happy vertices and edges problems. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 159–170. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21398-9_13

    Chapter  Google Scholar 

  21. Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theoret. Comput. Sci. 593, 117–131 (2015)

    Article  MathSciNet  Google Scholar 

  22. Zhang, P., Xu, Y., Jiang, T., Li, A., Lin, G., Miyano, E.: Improved approximation algorithms for the maximum happy vertices and edges problems. Algorithmica 80(5), 1412–1438 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danil Sagunov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bliznets, I., Sagunov, D. (2019). Lower Bounds for the Happy Coloring Problems. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26176-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26175-7

  • Online ISBN: 978-3-030-26176-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics