Skip to main content

Lower Bounds for Small Ramsey Numbers on Hypergraphs

  • Conference paper
  • First Online:
Book cover Computing and Combinatorics (COCOON 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11653))

Included in the following conference series:

  • 874 Accesses

Abstract

The Ramsey number \(r_k(p, q)\) is the smallest integer N that satisfies for every red-blue coloring on k-subsets of [N], there exist p integers such that any k-subset of them is red, or q integers such that any k-subset of them is blue. In this paper, we study the lower bounds for small Ramsey numbers on hypergraphs by constructing counter-examples and recurrence relations. We present a new algorithm to prove lower bounds for \(r_k(k+1, k+1)\). In particular, our algorithm is able to prove \(r_5(6,6) \ge 72\), where there is no lower bound on 5-hypergraphs before this work. We also provide several recurrence relations to calculate lower bounds based on lower bound values on smaller p and q. Combining both of them, we achieve new lower bounds for \(r_k(p, q)\) on arbitrary p, q, and \(k \ge 4\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathbf {v_2} \ge _c \mathbf {v_1}\) reads “\(v_2\) contains \(v_1\)”.

  2. 2.

    Conventionally, \(\mathbf {1}^n\) is a vector of length n with all coordinates being 1; \(\mathbf {e_i}\) is a vector with the i-th coordinate being 1 and others being 0.

References

  1. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

    Google Scholar 

  2. Conlon, D., Fox, J., Sudakov, B.: Hypergraph ramsey numbers. J. Am. Math. Soc. 23(1), 247–266 (2010)

    Article  MathSciNet  Google Scholar 

  3. Erdős, P., Hajnal, A., Rado, R.: Partition relations for cardinal numbers. Acta Mathematica Hungarica 16(1–2), 93–196 (1965)

    Article  MathSciNet  Google Scholar 

  4. Erdös, P., Rado, R.: A partition calculus in set theory. Bull. Am. Math. Soc. 62(5), 427–489 (1956)

    Article  MathSciNet  Google Scholar 

  5. Gaitan, F., Clark, L.: Ramsey numbers and adiabatic quantum computing. Phys. Rev. Lett. 108(1), 010501 (2012)

    Article  Google Scholar 

  6. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory, vol. 20. Wiley, New York (1990)

    MATH  Google Scholar 

  7. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_15

    Chapter  MATH  Google Scholar 

  8. Liu, S., Papakonstantinou, P.A.: Local search for hard SAT formulas: the strength of the polynomial law. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 732–738 (2016)

    Google Scholar 

  9. McKay, B.D., Radziszowski, S.P.: The first classical ramsey number for hypergraphs is computed. In: Proceedings of the Second Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, vol. 1991, pp. 304–308 (1991)

    Google Scholar 

  10. McKay, B.D., Radziszowski, S.P.: Subgraph counting identities and ramsey numbers. J. Comb. Theory Ser. B 69(2), 193–209 (1997)

    Article  MathSciNet  Google Scholar 

  11. Radziszowski, S.P., et al.: Small ramsey numbers. Electron. J. Combin. 1(7) (1994)

    Google Scholar 

  12. Shastri, A.: Lower bounds for bi-colored quaternary ramsey numbers. Discrete Math. 84(2), 213–216 (1990)

    Article  MathSciNet  Google Scholar 

  13. Shearer, J.B.: Lower bounds for small diagonal ramsey numbers. J. Comb. Theory Ser. A 42(2), 302–304 (1986)

    Article  MathSciNet  Google Scholar 

  14. Shelah, S.: Primitive recursive bounds for van der waerden numbers. J. Am. Math. Soc. 1(3), 683–697 (1988)

    Article  MathSciNet  Google Scholar 

  15. Shi, L.: Upper bounds for ramsey numbers. Discrete Math. 270(1–3), 250–264 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Song, E., Ye, W., Liu, Y.: New lower bounds for ramsey number R (p, q; 4). Discrete Math. 145(1–3), 343–346 (1995)

    Article  MathSciNet  Google Scholar 

  17. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: an implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005). https://doi.org/10.1007/11527695_24

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

The author wants to thank the anonymous reviewers for their valuable comments. Research at Princeton University partially supported by an innovation research grant from Princeton and a gift from Microsoft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cliff Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cliff Liu, S. (2019). Lower Bounds for Small Ramsey Numbers on Hypergraphs. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26176-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26175-7

  • Online ISBN: 978-3-030-26176-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics