Skip to main content

On Proving Parameterized Size Lower Bounds for Multilinear Algebraic Models

  • Conference paper
  • First Online:
  • 871 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11653))

Abstract

We consider the problem of obtaining parameterized lower bounds for the size of arithmetic circuits computing polynomials with the degree of the polynomial as the parameter. In particular, we consider the following special classes of multilinear algebraic branching programs: (1) Read Once Oblivious Algebraic Branching Programs (ROABPs); (2) Strict interval branching programs; and (3) Sum of read once formulas with restricted ordering.

We obtain parameterized lower bounds (i.e., \(n^{\varOmega (t(k))}\) lower bound for some function t of k) on the size of the above models computing a multilinear polynomial that can be computed by a depth four circuit of size \(g(k) n^{O(1)}\) for some computable function g.

Our proof is an adaptation of the existing techniques to the parameterized setting. The main challenge we address is the construction of hard parameterized polynomials. In fact, we show that there are polynomials computed by depth four circuits of small size (in the parameterized sense), but have high rank of the partial derivative matrix.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms. SIAM J. Discrete Math. 26(2), 695–717 (2012)

    Article  MathSciNet  Google Scholar 

  2. Arvind, V., Raja, S.: Some lower bound results for set-multilinear arithmetic computations. Chicago J. Theor. Comput. Sci. (2016)

    Google Scholar 

  3. Baur, W., Strassen, V.: The complexity of partial derivatives. Theoret. Comput. Sci. 22(3), 317–330 (1983)

    Article  MathSciNet  Google Scholar 

  4. Björklund, A.: Exact covers via determinants. In: STACS, pp. 95–106 (2010)

    Google Scholar 

  5. Björklund, A., Husfeldt, T., Taslaman, N.: Shortest cycle through specified elements. In: SODA, pp. 1747–1753 (2012)

    Google Scholar 

  6. Chauhan, A., Rao, B.V.R.: Parameterized analogues of probabilistic computation. In: Ganguly, S., Krishnamurti, R. (eds.) CALDAM 2015. LNCS, vol. 8959, pp. 181–192. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14974-5_18

    Chapter  Google Scholar 

  7. Chillara, S., Engels, C., Limaye, N., Srinivasan, S.: A near-optimal depth-hierarchy theorem for small-depth multilinear circuits. In: FOCS (2018)

    Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  9. Engels, C.: Why are certain polynomials hard? A look at non-commutative, parameterized and homomorphism polynomials. Ph.D. thesis, Saarland University (2016)

    Google Scholar 

  10. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S., Rao, B.V.R.: Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci. 78(3), 698–706 (2012)

    Article  MathSciNet  Google Scholar 

  11. Fournier, H., Limaye, N., Malod, G., Srinivasan, S.: Lower bounds for depth 4 formulas computing iterated matrix multiplication. In: STOC, pp. 128–135 (2014)

    Google Scholar 

  12. Ghosal, P., Prakash, O., Rao, B.V.R.: On constant depth circuits parameterized by degree: identity testing and depth reduction. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 250–261. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_21

    Chapter  MATH  Google Scholar 

  13. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Approaching the chasm at depth four. J. ACM (JACM) 61(6), 33 (2014)

    Article  MathSciNet  Google Scholar 

  14. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006)

    Article  MathSciNet  Google Scholar 

  15. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004)

    Article  MathSciNet  Google Scholar 

  16. Kayal, N., Nair, V., Saha, C.: Separation between read-once oblivious algebraic branching programs (ROABPs) and multilinear depth three circuits. In: STACS, pp. 46:1–46:15 (2016)

    Google Scholar 

  17. Kumar, M., Saraf, S.: The limits of depth reduction for arithmetic formulas: it’s all about the top fan-in. SIAM J. Comput. 44(6), 1601–1625 (2015)

    Article  MathSciNet  Google Scholar 

  18. Müller, M.: Parameterized randomization. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg im Breisgau (2008)

    Google Scholar 

  19. Nisan, N.: Lower bounds for non-commutative computation. In: STOC, pp. 410–418. ACM (1991)

    Google Scholar 

  20. Raz, R.: Separation of multilinear circuit and formula size. Theory Comput. 2(6), 121–135 (2006)

    Article  MathSciNet  Google Scholar 

  21. Raz, R.: Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM 56(2), 8:1–8:17 (2009)

    Article  MathSciNet  Google Scholar 

  22. Raz, R., Yehudayoff, A.: Lower bounds and separations for constant depth multilinear circuits. Comput. Complex. 18(2), 171–207 (2009)

    Article  MathSciNet  Google Scholar 

  23. Saptharishi, R.: A survey of lower bounds in arithmetic circuit complexity. Technical report (2019)

    Google Scholar 

  24. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and open questions. Found. Trends Theor. Comput. Sci. 5(3–4), 207–388 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purnata Ghosal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosal, P., Raghavendra Rao, B.V. (2019). On Proving Parameterized Size Lower Bounds for Multilinear Algebraic Models. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26176-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26175-7

  • Online ISBN: 978-3-030-26176-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics