Skip to main content

A Sub-supersolutions Method for a Class of Weighted (p(.), q(.))-Laplacian Systems

  • Chapter
  • First Online:
Book cover Recent Advances in Modeling, Analysis and Systems Control: Theoretical Aspects and Applications

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 243))

  • 239 Accesses

Abstract

In this paper we study the existence of a positive weak solutions for a quasilinear elliptic system involving weighted \((p(.),q(.))-\)Laplacian operators. The approach is based on sub-supersolutions method and on fixed point theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acerbi, E., Mingione, G.: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    Article  MathSciNet  Google Scholar 

  2. Afrouzi, G.A., Ghorbani, H.: Existence of positive solutions for p (x)-laplacian problems. Electron. J. Differ. Equ. (2007)

    Google Scholar 

  3. Azroul, E., Barbara, A., Abbassi, A.: Degenerate \(p(x)-\)elliptic equation with second member in \(L^1\). ASTES J. 2(5), 45–54 (2017)

    Article  Google Scholar 

  4. Bonsall, F.F.: Lectures on Some Fixed Point Theorems of Functional Analysis. Tata Institute of Fundamental Research, Bombay, India (1962)

    Google Scholar 

  5. Brézis, H.: Analyse Fonctionnelle Théorie et Applications. Masson, Paris (1983)

    MATH  Google Scholar 

  6. Diening, L.: Theoretical and Numerical Results for Electrorheological Fluids. University of Freiberg, Germany (2002). PhD thesis

    MATH  Google Scholar 

  7. Edmunds, D.E., Lang, J., Nekvinda, A.: On \(L^{p(x)}\) norms. Proc. R. Soc. Lond. Ser. A 455, 219–225 (1999)

    Article  MathSciNet  Google Scholar 

  8. Fan, X.-L., Zhang, Q., Zhao, D.: Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302(2), 306–317 (2005)

    Article  MathSciNet  Google Scholar 

  9. Fan, X.L., Zhao, D.: On the generalized Orlicz-Sobolev space \(W^{k, p(x)}(\Omega )\). J. Gansu Educ. Coll. 12(1), 1–6 (1998)

    Google Scholar 

  10. Figueiredo, G.M., Moussaoui, A., Dos Santos, G.C.G. et al.: A sub-supersolution approach for some classes of nonlocal problems involving Orlicz spaces (2018). arXiv:1804.07977

  11. Ková\(\check{c}\)ik, O., Rákosnik, J.: On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\) . Czechoslovak Math. J. 41(116), 592–618 (1991)

    Google Scholar 

  12. Liu, J., Zhang, Q., Zhao, C.: Existence of positive solutions for p(x) Laplacian equations with a singular nonlinear term. Electron. J. Differ. Equ. 2014(155), 21 pp (2014)

    Google Scholar 

  13. Mihǎilescu, M., Rǎdulescu, V., Stancu, D.: A Caffarelli-Kohn-Nirenberg type inequality with variable exponent and applications to PDEs. Complex Var. Elliptic Eqns. 56, 659–669 (2011)

    Article  MathSciNet  Google Scholar 

  14. Miyagaki, O.H., Rodrigues, R.S.: On positive solutions for a class of singular quasilinear elliptic systems. J. Math. Anal. Appl. 334, 818–833 (2007)

    Article  MathSciNet  Google Scholar 

  15. Orlicz, W.: \(\ddot{U}\text{ berkonjugierte }\) exponent enfolgen. Stud. Math. 3, 200–212 (1931)

    Article  Google Scholar 

  16. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

    Book  Google Scholar 

  17. Ruzicka, M.: Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math. 49(6), 565–609 (2004)

    Article  MathSciNet  Google Scholar 

  18. Santos, G.C.G., Figueiredo, G.M., Tavares, L.S.: Acta Appl. Math. (2017). https://doi.org/10.1007/s10440-017-0126-1

    Article  Google Scholar 

  19. Zhang, Q.: Existence and asymptotic behavior of positive solutions to p(x)-Laplacian equations with singular nonlinearities. J. Inequal. App. (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athmane Boumazourh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azroul, E., Boumazourh, A. (2020). A Sub-supersolutions Method for a Class of Weighted (p(.), q(.))-Laplacian Systems. In: Zerrik, E., Melliani, S., Castillo, O. (eds) Recent Advances in Modeling, Analysis and Systems Control: Theoretical Aspects and Applications. Studies in Systems, Decision and Control, vol 243. Springer, Cham. https://doi.org/10.1007/978-3-030-26149-8_3

Download citation

Publish with us

Policies and ethics