Skip to main content

Parameters of Motion for Multi-UGV Control System Performing Joint Transportation

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2019)

Abstract

The paper considers an algorithm for calculating the motion parameters for a group of mobile robots performing a joint transport task. The motion of this group of mobile robots is considered on a plane surface. Trajectory of motion passes over different zones with various soil properties. Rectilinear motion and motion along the arc of known radius are considered. The algorithm was successfully tested in previously developed special software for debugging and modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varlamov, V.K.: Design, Calculation and Performance Properties of Cars. Academy, Moscow (2007)

    Google Scholar 

  2. Volskaya, N.S.: Methods of calculation of traction development of characteristics of wheeled vehicles for a given road and soil conditions in the areas of operation: Ph.D. thesis, 05.05.03, Moscow (2008)

    Google Scholar 

  3. Kalyaev, I.A.: Models and algorithms of collective control in groups of robots: [monography]. Fizmatlit, Moscow (2009)

    Google Scholar 

  4. Cheng, B.S., Baker, J.: Of the soil parameters to Predict the performance of vehicles. J. Terramechanics 9(2), 1–13 (1973)

    Google Scholar 

  5. Wong, Y.Y., Rice, A.R.: Prediction of rigid wheel performance based on analysis of soil-wheel stresses. J. Terramech 4(2), 7–25 (1967)

    Article  Google Scholar 

  6. Litvinov, A.S., Farobin, Ya.E.: Car: theory of operational properties: textbook for universities in the specialty “Cars and automotive industry”. Mechanical Engineering, Moscow (1989)

    Google Scholar 

  7. Platonov, F.: All-wheel drive cars. Mechanical Engineering, Moscow (1989)

    Google Scholar 

  8. Smirnov, G.A.: Distribution of traction forces on the wheels of four-wheel drive cars when they move on the uneven. Izvestiya vuzov. Mech. Eng. 17, 19–24 (1965)

    Google Scholar 

  9. Belousov, S., Priests, D.: Heavy-Duty Wheeled Vehicles. Design. Theory. Calculation. MGTU im. Bauman, Moscow (2006)

    Google Scholar 

  10. Tsitovich, N.A.: Soil mechanics. Higher school, Moscow (1983)

    Google Scholar 

  11. Rozhdestvensky, L.L.: And forecasting of traction qualities of wheel propellers of planetary Rovers: Ph.D. thesis: 05.05.03, Moscow (1982)

    Google Scholar 

  12. Socks, P., Rubtsov, I.V.: Key issues of creating intelligent mobile robots. Eng. J. Sci. Innov. 3(15) (2013)

    Google Scholar 

  13. Belyakov, B.: Interaction with snow cover of elastic propellers of special transport vehicles: Ph.D. thesis: 05.05.03, Moscow (1999)

    Google Scholar 

  14. Choopar, T., Zweiri, Yn., Seneviratne, L.D., Althoefer, K.: On-line evaluation of soil properties for Autonomous excavators. In: IEEE International Conference on Robotics and Automation, pp. 121–126 (2003)

    Google Scholar 

  15. Hutangkabodee, S., Zweiri, Ya.H., Seneviratne, L.D., Althoefer, K.: Traversability prediction for unmanned ground vehicles based on the identified soil parameters. In: World Congress of IFAC, vol. 16 (2005)

    Google Scholar 

  16. Salama, M., Vantsevich, V.V.: Normal and longitudinal dynamics of the tire-terrain and power loss sliding unmanned ground vehicles. In: ASME 2013 International Mechanical Engineering Congress and Exposition, vol. 4 (2013)

    Google Scholar 

  17. Hutangkabodee, S., Zweiri, Y.H., Seneviratne, L.D., Altho, K.: Multi-solution problem for track-terrain interaction dynamics and lumped soil parameter identification. In: Corke, P., Sukkariah, S. (eds.) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol. 25, pp. 517–528. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-33453-8_43

    Chapter  Google Scholar 

  18. Salama, M., Vantsevich, V.V.: Stochastic terrain properties-vehicle interaction for agile the dynamics of the groundwater table. In: 7th American Regional Conference of the ISTVS, Tampa, Florida, USA

    Google Scholar 

  19. Ego, H., et al.: BLA-SNT cooperation for transportation of facilities in the Industrial area. In: 2015 IEEE International Conference on Industrial Technology (ICIT) (2015)

    Google Scholar 

  20. Taghavifar, H., Mardani, A.: Off-road Vehicle Dynamics. Studies in Systems, Decision and Control, vol. 70, 37 p. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42520-7_2

    Google Scholar 

  21. Hüttenrauch, M., Šošic, A., Neumann, G.: Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforcement Learning. Digital Library for Physics and Astronomy, 13 p. (2017)

    Google Scholar 

  22. Groumpos, P.P.: Intelligence and fuzzy cognitive maps. Sci. Issues Chall. Oppor. Stud. Inform. Control 27(3), 247–264 (2018)

    Article  Google Scholar 

  23. Shlyakhov, N., Dashevskiy, V., Vatamaniuk, I., Zelezny, M., Ronzhin, A.: Justification of the technical requirements of a fully functional modular robot. In: MATEC Web of Conferences, vol. 113, p. 02008. EDP Sciences (2017)

    Google Scholar 

  24. Yuksel, C., Schaefer, S., Keyser, J.: On the parameterization of Catmull-Rom curves. In: SIAM/ACM Joint Conference on Geometric and Physical Modeling (2009). https://doi.org/10.1145/1629255.1629262

  25. Gradetsky, V., et al.: Highly passable propulsive device for UGVs on rugged terrain. In: 13th International Scientific-Technical Conference on Electromechanics and Robotics “Zavalishin’s Readings”, vol. 161, no. 03013. pp, 1–5 (2018)

    Article  Google Scholar 

  26. Gradetsky, V.G., Ermolov, L.I., Knyazkov, M.M., Semenov, E., Sukhanov, A.N.: The interaction of forces loaded mobile robot with the ground. Mechatron. Autom. Control. 12, 819–824 (2017)

    Google Scholar 

  27. Gradetsky, V.G., Ermolov, I.L., Knyazkov, M.M., Semenov, E.A., Sobolnikov, S.A., Sukhanov, A.N.: Implementation of a joint transport task by a group of robots. In: Gorodetskiy, A.E., Tarasova, I.L. (eds.) Smart Electromechanical Systems. SSDC, vol. 174, pp. 203–214. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99759-9_17

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partially supported by RFBR grant № 16-29-04199 and partially supported by the RAS Presidium program “Actual problems of robotic systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Sukhanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gradetsky, V. et al. (2019). Parameters of Motion for Multi-UGV Control System Performing Joint Transportation. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2019. Lecture Notes in Computer Science(), vol 11659. Springer, Cham. https://doi.org/10.1007/978-3-030-26118-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26118-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26117-7

  • Online ISBN: 978-3-030-26118-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics