Markets, Strategies, Arbitrage

  • Ernst Eberlein
  • Jan Kallsen
Part of the Springer Finance book series (FINANCE)


We study several problems of Mathematical Finance in a common framework, which is laid down in this chapter. We start by introducing notions such as price processes, trading strategies, discounting, and dividends.


  1. 29.
    T. Björk, Arbitrage Theory in Continuous Time, 3rd edn. (Oxford Univ. Press, Oxford, 2009)zbMATHGoogle Scholar
  2. 60.
    R. Cont, P. Tankov, Financial Modelling with Jump Processes (Chapman & Hall/CRC, Boca Raton, 2004)Google Scholar
  3. 61.
    J.-M. Courtault, F. Delbaen, Yu. Kabanov, C. Stricker, On the law of one price. Finance Stochast. 8(4), 525–530 (2004)MathSciNetCrossRefGoogle Scholar
  4. 73.
    F. Delbaen, W. Schachermayer, The Mathematics of Arbitrage (Springer, Berlin, 2006)zbMATHGoogle Scholar
  5. 81.
    E. Eberlein, J. Jacod, On the range of options prices. Finance Stochast. 1(2), 131–140 (1997)CrossRefGoogle Scholar
  6. 125.
    T. Goll, J. Kallsen, Optimal portfolios for logarithmic utility. Stoch. Process. Appl. 89(1), 31–48 (2000)MathSciNetCrossRefGoogle Scholar
  7. 130.
    P. Guasoni, E. Lépinette, M. Rásonyi, The fundamental theorem of asset pricing under transaction costs. Finance Stochast. 16(4), 741–777 (2012)MathSciNetCrossRefGoogle Scholar
  8. 132.
    J. Harrison, D. Kreps, Martingales and arbitrage in multiperiod securities markets. J. Econom. Theory 20(3), 381–408 (1979)MathSciNetCrossRefGoogle Scholar
  9. 133.
    M. Harrison, S. Pliska, Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11(3), 215–260 (1981)MathSciNetCrossRefGoogle Scholar
  10. 161.
    E. Jouini, H. Kallal, Martingales and arbitrage in securities markets with transaction costs. J. Econom. Theory 66(1), 178–197 (1995)MathSciNetCrossRefGoogle Scholar
  11. 185.
    I. Karatzas, C. Kardaras, The numéraire portfolio in semimartingale financial models. Finance Stochast. 11(4), 447–493 (2007)CrossRefGoogle Scholar
  12. 223.
    M. Musiela, M. Rutkowski, Martingale Methods in Financial Modelling, 2nd edn. Stochastic Modelling and Applied Probability (Springer, Berlin, 2005)CrossRefGoogle Scholar
  13. 294.
    J. Yan, A new look at the fundamental theorem of asset pricing. J. Korean Math. Soc. 35(3), 659–673 (1998). International Conference on Probability Theory and Its Applications (Taejon, 1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ernst Eberlein
    • 1
  • Jan Kallsen
    • 2
  1. 1.Department of Mathematical StochasticsUniversity of FreiburgFreiburg im BreisgauGermany
  2. 2.Department of MathematicsKiel UniversityKielGermany

Personalised recommendations