Mathematical Finance pp 439-459 | Cite as

# Markets, Strategies, Arbitrage

Chapter

First Online:

- 1.2k Downloads

## Abstract

We study several problems of Mathematical Finance in a common framework, which is laid down in this chapter. We start by introducing notions such as price processes, trading strategies, discounting, and dividends.

## References

- 29.T. Björk,
*Arbitrage Theory in Continuous Time*, 3rd edn. (Oxford Univ. Press, Oxford, 2009)zbMATHGoogle Scholar - 60.R. Cont, P. Tankov,
*Financial Modelling with Jump Processes*(Chapman & Hall/CRC, Boca Raton, 2004)Google Scholar - 61.J.-M. Courtault, F. Delbaen, Yu. Kabanov, C. Stricker, On the law of one price. Finance Stochast.
**8**(4), 525–530 (2004)MathSciNetCrossRefGoogle Scholar - 73.F. Delbaen, W. Schachermayer,
*The Mathematics of Arbitrage*(Springer, Berlin, 2006)zbMATHGoogle Scholar - 81.E. Eberlein, J. Jacod, On the range of options prices. Finance Stochast.
**1**(2), 131–140 (1997)CrossRefGoogle Scholar - 125.T. Goll, J. Kallsen, Optimal portfolios for logarithmic utility. Stoch. Process. Appl.
**89**(1), 31–48 (2000)MathSciNetCrossRefGoogle Scholar - 130.P. Guasoni, E. Lépinette, M. Rásonyi, The fundamental theorem of asset pricing under transaction costs. Finance Stochast.
**16**(4), 741–777 (2012)MathSciNetCrossRefGoogle Scholar - 132.J. Harrison, D. Kreps, Martingales and arbitrage in multiperiod securities markets. J. Econom. Theory
**20**(3), 381–408 (1979)MathSciNetCrossRefGoogle Scholar - 133.M. Harrison, S. Pliska, Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl.
**11**(3), 215–260 (1981)MathSciNetCrossRefGoogle Scholar - 161.E. Jouini, H. Kallal, Martingales and arbitrage in securities markets with transaction costs. J. Econom. Theory
**66**(1), 178–197 (1995)MathSciNetCrossRefGoogle Scholar - 185.I. Karatzas, C. Kardaras, The numéraire portfolio in semimartingale financial models. Finance Stochast.
**11**(4), 447–493 (2007)CrossRefGoogle Scholar - 223.M. Musiela, M. Rutkowski,
*Martingale Methods in Financial Modelling*, 2nd edn. Stochastic Modelling and Applied Probability (Springer, Berlin, 2005)CrossRefGoogle Scholar - 294.J. Yan, A new look at the fundamental theorem of asset pricing. J. Korean Math. Soc.
**35**(3), 659–673 (1998). International Conference on Probability Theory and Its Applications (Taejon, 1998)Google Scholar

## Copyright information

© Springer Nature Switzerland AG 2019