Mathematical Finance pp 409-437 | Cite as

# Equity Models

Chapter

First Online:

- 1.2k Downloads

## Abstract

The theory of Mathematical Finance in the following chapters rests on price processes of assets such as stocks, currencies, bonds, and commodities. They are often assumed to be given exogenously. Therefore we start by discussing what kinds of processes are suggested by statistical properties of real data.

## References

- 5.L. Bachelier,
*Théorie de la Spéculation*(Gauthier-Villars, Paris, 1900)CrossRefGoogle Scholar - 10.O. Barndorff-Nielsen, N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol.
**63**(2), 167–241 (2001)MathSciNetCrossRefGoogle Scholar - 15.D. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. Rev. Financ. Stud.
**9**(1), 69–107 (1996)CrossRefGoogle Scholar - 49.P. Carr, L. Wu, The finite moment log stable process and option pricing. J. Finance
**58**(2), 753–778 (2003)CrossRefGoogle Scholar - 50.P. Carr, L. Wu, Time-changed Lévy processes and option pricing. J. Financ. Econ.
**71**(1), 113–141 (2004)CrossRefGoogle Scholar - 52.P. Carr, H. Geman, D. Madan, M. Yor, Stochastic volatility for Lévy processes. Math. Finance
**13**(3), 345–382 (2003)MathSciNetCrossRefGoogle Scholar - 60.R. Cont, P. Tankov,
*Financial Modelling with Jump Processes*(Chapman & Hall/CRC, Boca Raton, 2004)Google Scholar - 142.S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud.
**6**(2), 327–343 (1993)MathSciNetCrossRefGoogle Scholar - 169.J. Kallsen, A didactic note on affine stochastic volatility models.
*From Stochastic Calculus to Mathematical Finance*(Springer, Berlin, 2006), pp. 343–368CrossRefGoogle Scholar - 183.J. Kallsen, P. Tankov, Characterization of dependence of multidimensional Lévy processes using Lévy copulas. J. Multivariate Anal.
**97**(7), 1551–1572 (2006)MathSciNetCrossRefGoogle Scholar - 228.M. Osborne, Brownian motion in the stock market. Oper. Res.
**7**(2), 145–173 (1959)MathSciNetCrossRefGoogle Scholar - 231.A. Pauwels,
*Variance-Optimal Hedging in Affine Volatility Models*. PhD thesis, Technical University of Munich, 2007Google Scholar - 257.P. Samuelson, Rational theory of warrant pricing. Ind. Manag. Rev.
**6**(2), 13 (1965)Google Scholar - 261.R. Schöbel, J. Zhu, Stochastic volatility with an Ornstein–Uhlenbeck process: an extension. Eur. Finance Rev.
**3**(1), 23–46 (1999)CrossRefGoogle Scholar - 263.W. Schoutens,
*Lévy Processes in Finance*(Wiley, New York, 2003)CrossRefGoogle Scholar - 280.E. Stein, J. Stein, Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stud.
**4**(4), 727–752 (1991)CrossRefGoogle Scholar

## Copyright information

© Springer Nature Switzerland AG 2019