Mathematical Finance pp 373-403 | Cite as

# Optimal Control

Chapter

First Online:

- 1.2k Downloads

## Abstract

Dynamic stochastic optimisation problems play an important role in Mathematical Finance and other applications. In this chapter we provide basic tools for their mathematical treatment in continuous time.

## References

- 14.B. Bassan, C. Ceci, Regularity of the value function and viscosity solutions in optimal stopping problems for general Markov processes. Stochastics Stochastics Rep.
**74**(3–4), 633–649 (2002)MathSciNetCrossRefGoogle Scholar - 28.J.-M. Bismut, An introductory approach to duality in optimal stochastic control. SIAM Rev.
**20**(1), 62–78 (1978)MathSciNetCrossRefGoogle Scholar - 76.C. Dellacherie, P.-A. Meyer,
*Probabilities and Potential B: Theory of Martingales*(North-Holland, Amsterdam, 1982)zbMATHGoogle Scholar - 96.N. El Karoui, Les aspects probabilistes du contrôle stochastique, in
*Ninth Saint Flour Probability Summer School—1979 (Saint Flour, 1979)*, volume 876 of*Lecture Notes in Math.*(Springer, Berlin, 1981), pp. 73–238Google Scholar - 112.W. Fleming, M. Soner,
*Controlled Markov Processes and Viscosity Solutions*, 2nd edn. (Springer, New York, 2006)zbMATHGoogle Scholar - 115.H. Föllmer, P. Protter, Local martingales and filtration shrinkage. ESAIM Probab. Stat.
**15**(In honor of Marc Yor, suppl.), S25–S38 (2011)Google Scholar - 126.T. Goll, J. Kallsen, A complete explicit solution to the log-optimal portfolio problem. Ann. Appl. Probab.
**13**(2), 774–799 (2003)MathSciNetCrossRefGoogle Scholar - 135.M. Haugh, L. Kogan, Pricing American options: a duality approach. Oper. Res.
**52**(2), 258–270 (2004)MathSciNetCrossRefGoogle Scholar - 154.J. Jacod, A. Shiryaev,
*Limit Theorems for Stochastic Processes*, 2nd edn. (Springer, Berlin, 2003)CrossRefGoogle Scholar - 206.M. Lenga,
*Representable Options*. PhD thesis, Kiel University, 2017Google Scholar - 217.R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case. Rev. Econ. Stat.
**51**(3), 247–257 (1969)CrossRefGoogle Scholar - 218.R. Merton, Optimum consumption and portfolio rules in a continuous-time model. J. Econom. Theory
**3**(4), 373–413 (1971)MathSciNetCrossRefGoogle Scholar - 219.R. Merton, Theory of rational option pricing. Bell J. Econom. Manag. Sci.
**4**, 141–183 (1973)MathSciNetCrossRefGoogle Scholar - 226.B. Øksendal,
*Stochastic Differential Equations*, 6th edn. (Springer, Berlin, 2003)CrossRefGoogle Scholar - 227.B. Øksendal, A. Sulem,
*Applied Stochastic Control of Jump Diffusions*, 2nd edn. (Springer, Berlin, 2007)CrossRefGoogle Scholar - 232.G. Peskir, A. Shiryaev,
*Optimal Stopping and Free-Boundary Problems*(Birkhäuser, Basel, 2006)Google Scholar - 233.H. Pham, On quadratic hedging in continuous time. Math. Methods Oper. Res.
**51**(2), 315–339 (2000)MathSciNetCrossRefGoogle Scholar - 234.H. Pham,
*Continuous-Time Stochastic Control and Optimization with Financial Applications*(Springer, Berlin, 2009)CrossRefGoogle Scholar - 249.C. Rogers, Monte Carlo valuation of American options. Math. Finance
**12**(3), 271–286 (2002)MathSciNetCrossRefGoogle Scholar - 260.W. Schachermayer, M. Sîrbu, E. Taflin, In which financial markets do mutual fund theorems hold true? Finance Stochast.
**13**(1), 49–77 (2009)MathSciNetCrossRefGoogle Scholar - 270.M. Schweizer, A guided tour through quadratic hedging approaches.
*Option Pricing, Interest Rates and Risk Management*(Cambridge Univ. Press, Cambridge, 2001), pp. 538–574Google Scholar - 271.A. Seierstad,
*Stochastic Control in Discrete and Continuous Time*(Springer, New York, 2009)CrossRefGoogle Scholar - 287.N. Touzi,
*Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE*(Springer, New York, 2013)CrossRefGoogle Scholar - 295.J. Yong, X. Zhou,
*Stochastic Controls: Hamiltonian Systems and HJB Equations*(Springer, New York, 1999)CrossRefGoogle Scholar

## Copyright information

© Springer Nature Switzerland AG 2019