Mathematical Finance pp 337-372 | Cite as
Affine and Polynomial Processes
Chapter
First Online:
- 1.2k Downloads
Abstract
Affine processes appear here for two reasons. They are treated in this part on stochastic calculus because they solve linear or more generally affine martingale problems.
References
- 63.C. Cuchiero, M. Keller-Ressel, J. Teichmann, Polynomial processes and their applications to mathematical finance. Finance Stochast. 16(4), 711–740 (2012)MathSciNetCrossRefGoogle Scholar
- 64.C. Cuchiero, M. Larsson, S. Svaluto-Ferro, Polynomial jump-diffusions on the unit simplex. Ann. Appl. Probab. 28(4), 2451–2500 (2018)MathSciNetCrossRefGoogle Scholar
- 80.D. Duffie, D. Filipović, W. Schachermayer, Affine processes and applications in finance. Ann. Appl. Probab. 13(3), 984–1053 (2003)MathSciNetCrossRefGoogle Scholar
- 100.S. Ethier, T. Kurtz, Markov Processes: Characterization and Convergence (Wiley, New York, 1986)CrossRefGoogle Scholar
- 104.D. Filipović, Time-inhomogeneous affine processes. Stoch. Process. Appl. 115(4), 639–659 (2005)MathSciNetCrossRefGoogle Scholar
- 106.D. Filipović, M. Larsson, Polynomial diffusions and applications in finance. Finance Stochast. 20(4), 931–972 (2016)MathSciNetCrossRefGoogle Scholar
- 107.D. Filipović, M. Larsson, Polynomial jump-diffusion models. arXiv preprint arXiv:1711.08043 (2017)Google Scholar
- 169.J. Kallsen, A didactic note on affine stochastic volatility models. From Stochastic Calculus to Mathematical Finance (Springer, Berlin, 2006), pp. 343–368CrossRefGoogle Scholar
- 170.J. Kallsen, P. Krühner, On uniqueness of solutions to martingale problems—counterexamples and sufficient criteria. arXiv preprint arXiv:1607.02998 (2016)Google Scholar
- 172.J. Kallsen, J. Muhle-Karbe, Exponentially affine martingales, affine measure changes and exponential moments of affine processes. Stoch. Process. Appl. 120(2), 163–181 (2010)MathSciNetCrossRefGoogle Scholar
- 191.D. Kendall, On the generalized “birth-and-death” process. Ann. Math. Stat. 19, 1–15 (1948)MathSciNetCrossRefGoogle Scholar
- 241.D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd edn. (Springer, Berlin, 1999)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019