Mathematical Finance pp 337-372 | Cite as

# Affine and Polynomial Processes

Chapter

First Online:

- 1.2k Downloads

## Abstract

Affine processes appear here for two reasons. They are treated in this part on stochastic calculus because they solve linear or more generally affine martingale problems.

## References

- 63.C. Cuchiero, M. Keller-Ressel, J. Teichmann, Polynomial processes and their applications to mathematical finance. Finance Stochast.
**16**(4), 711–740 (2012)MathSciNetCrossRefGoogle Scholar - 64.C. Cuchiero, M. Larsson, S. Svaluto-Ferro, Polynomial jump-diffusions on the unit simplex. Ann. Appl. Probab.
**28**(4), 2451–2500 (2018)MathSciNetCrossRefGoogle Scholar - 80.D. Duffie, D. Filipović, W. Schachermayer, Affine processes and applications in finance. Ann. Appl. Probab.
**13**(3), 984–1053 (2003)MathSciNetCrossRefGoogle Scholar - 100.S. Ethier, T. Kurtz,
*Markov Processes: Characterization and Convergence*(Wiley, New York, 1986)CrossRefGoogle Scholar - 104.D. Filipović, Time-inhomogeneous affine processes. Stoch. Process. Appl.
**115**(4), 639–659 (2005)MathSciNetCrossRefGoogle Scholar - 106.D. Filipović, M. Larsson, Polynomial diffusions and applications in finance. Finance Stochast.
**20**(4), 931–972 (2016)MathSciNetCrossRefGoogle Scholar - 107.D. Filipović, M. Larsson, Polynomial jump-diffusion models. arXiv preprint arXiv:1711.08043 (2017)Google Scholar
- 169.J. Kallsen, A didactic note on affine stochastic volatility models.
*From Stochastic Calculus to Mathematical Finance*(Springer, Berlin, 2006), pp. 343–368CrossRefGoogle Scholar - 170.J. Kallsen, P. Krühner, On uniqueness of solutions to martingale problems—counterexamples and sufficient criteria. arXiv preprint arXiv:1607.02998 (2016)Google Scholar
- 172.J. Kallsen, J. Muhle-Karbe, Exponentially affine martingales, affine measure changes and exponential moments of affine processes. Stoch. Process. Appl.
**120**(2), 163–181 (2010)MathSciNetCrossRefGoogle Scholar - 191.D. Kendall, On the generalized “birth-and-death” process. Ann. Math. Stat.
**19**, 1–15 (1948)MathSciNetCrossRefGoogle Scholar - 241.D. Revuz, M. Yor,
*Continuous Martingales and Brownian Motion*, 3rd edn. (Springer, Berlin, 1999)CrossRefGoogle Scholar

## Copyright information

© Springer Nature Switzerland AG 2019