Mathematical Finance pp 249-298 | Cite as
Semimartingale Characteristics
Chapter
First Online:
- 1.2k Downloads
Abstract
The stochastic calculus in Chap. 3 is based on integration. Small Lévy-like bits of processes are pieced together to yield something that behaves differently from any Lévy process on a global scale.
References
- 57.A. Černý, J. Ruf, Stochastic modelling without Brownian motion: Simplified calculus for semimartingales (2018). PreprintGoogle Scholar
- 100.S. Ethier, T. Kurtz, Markov Processes: Characterization and Convergence (Wiley, New York, 1986)CrossRefGoogle Scholar
- 125.T. Goll, J. Kallsen, Optimal portfolios for logarithmic utility. Stoch. Process. Appl. 89(1), 31–48 (2000)MathSciNetCrossRefGoogle Scholar
- 138.S. He, J. Wang, J. Yan, Semimartingale Theory and Stochastic Calculus (CRC Press, Boca Raton, 1992)zbMATHGoogle Scholar
- 152.J. Jacod, Calcul Stochastique et Problèmes de Martingales, volume 714 of Lecture Notes in Math (Springer, Berlin, 1979)CrossRefGoogle Scholar
- 154.J. Jacod, A. Shiryaev, Limit Theorems for Stochastic Processes, 2nd edn. (Springer, Berlin, 2003)CrossRefGoogle Scholar
- 155.T. Jaisson, M. Rosenbaum, Limit theorems for nearly unstable Hawkes processes. Ann. Appl. Probab. 25(2), 600–631 (2015)MathSciNetCrossRefGoogle Scholar
- 168.J. Kallsen, σ-localization and σ-martingales. Teor. Veroyatnost. i Primenen. 48(1), 177–188 (2003)MathSciNetCrossRefGoogle Scholar
- 169.J. Kallsen, A didactic note on affine stochastic volatility models. From Stochastic Calculus to Mathematical Finance (Springer, Berlin, 2006), pp. 343–368CrossRefGoogle Scholar
- 181.J. Kallsen, A. Shiryaev, Time change representation of stochastic integrals. Teor. Veroyatnost. i Primenen. 46(3), 579–585 (2001)MathSciNetCrossRefGoogle Scholar
- 207.D. Lépingle, J. Mémin, Sur l’intégrabilité uniforme des martingales exponentielles. Z. Wahrsch. Verw. Gebiete 42(3), 175–203 (1978)MathSciNetCrossRefGoogle Scholar
- 238.P. Protter, Stochastic Integration and Differential Equations, 2nd edn. (Springer, Berlin, 2004)zbMATHGoogle Scholar
- 241.D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd edn. (Springer, Berlin, 1999)CrossRefGoogle Scholar
- 291.S. Watanabe, On discontinuous additive functionals and Lévy measures of a Markov process. Jpn. J. Math. 34, 53–70 (1964)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019