Mathematical Finance pp 171-248 | Cite as
Stochastic Integration
Chapter
First Online:
- 1.2k Downloads
Abstract
Traditional stochastic calculus is based on stochastic integration. It constitutes the basis of modern Mathematical Finance. The most important notions and results from the theory are presented in this chapter.
References
- 2.D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. (Cambridge Univ. Press, Cambridge, 2009)CrossRefGoogle Scholar
- 8.G. Barles, R. Buckdahn, E. Pardoux, Backward stochastic differential equations and integral-partial differential equations. Stochastics Stochastics Rep. 60(1–2), 57–83 (1997)MathSciNetCrossRefGoogle Scholar
- 43.P. Brockwell, Lévy-driven CARMA processes. Ann. Inst. Stat. Math. 53(1), 113–124 (2001)MathSciNetCrossRefGoogle Scholar
- 58.E. Çinlar, J. Jacod, P. Protter, M. Sharpe, Semimartingales and Markov processes. Z. Wahrsch. verw. Gebiete 54(2), 161–219 (1980)MathSciNetCrossRefGoogle Scholar
- 60.R. Cont, P. Tankov, Financial Modelling with Jump Processes (Chapman & Hall/CRC, Boca Raton, 2004)Google Scholar
- 76.C. Dellacherie, P.-A. Meyer, Probabilities and Potential B: Theory of Martingales (North-Holland, Amsterdam, 1982)zbMATHGoogle Scholar
- 114.H. Föllmer, Yu. Kabanov, Optional decomposition and Lagrange multipliers. Finance Stochast. 2(1), 69–81 (1998)MathSciNetzbMATHGoogle Scholar
- 125.T. Goll, J. Kallsen, Optimal portfolios for logarithmic utility. Stoch. Process. Appl. 89(1), 31–48 (2000)MathSciNetCrossRefGoogle Scholar
- 152.J. Jacod, Calcul Stochastique et Problèmes de Martingales, volume 714 of Lecture Notes in Math (Springer, Berlin, 1979)CrossRefGoogle Scholar
- 154.J. Jacod, A. Shiryaev, Limit Theorems for Stochastic Processes, 2nd edn. (Springer, Berlin, 2003)CrossRefGoogle Scholar
- 163.J. Kallsen, Semimartingale Modelling in Finance. PhD thesis, University of Freiburg, 1998Google Scholar
- 168.J. Kallsen, σ-localization and σ-martingales. Teor. Veroyatnost. i Primenen. 48(1), 177–188 (2003)MathSciNetCrossRefGoogle Scholar
- 169.J. Kallsen, A didactic note on affine stochastic volatility models. From Stochastic Calculus to Mathematical Finance (Springer, Berlin, 2006), pp. 343–368CrossRefGoogle Scholar
- 182.J. Kallsen, A. Shiryaev, The cumulant process and Esscher’s change of measure. Finance Stochast. 6(4), 397–428 (2002)MathSciNetCrossRefGoogle Scholar
- 186.I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, 2nd edn. (Springer, New York, 1991)zbMATHGoogle Scholar
- 196.D. Kramkov, Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Probab. Theory Relat. Fields 105(4), 459–479 (1996)MathSciNetCrossRefGoogle Scholar
- 204.D. Lamberton, B. Lapeyre, Stochastic Calculus Applied to Finance (Chapman & Hall, London, 1996)zbMATHGoogle Scholar
- 230.E. Pardoux, S. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990)MathSciNetCrossRefGoogle Scholar
- 238.P. Protter, Stochastic Integration and Differential Equations, 2nd edn. (Springer, Berlin, 2004)zbMATHGoogle Scholar
- 239.M.-C. Quenez, A. Sulem, BSDEs with jumps, optimization and applications to dynamic risk measures. Stoch. Process. Appl. 123(8), 3328–3357 (2013)MathSciNetCrossRefGoogle Scholar
- 241.D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd edn. (Springer, Berlin, 1999)CrossRefGoogle Scholar
- 252.C. Rogers, D. Williams, Diffusions, Markov processes, and Martingales: Volume 2, Itô Calculus (Cambridge Univ. Press, Cambridge, 1994)zbMATHGoogle Scholar
- 259.K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge Univ. Press, Cambridge, 1999)zbMATHGoogle Scholar
- 263.W. Schoutens, Lévy Processes in Finance (Wiley, New York, 2003)CrossRefGoogle Scholar
- 284.S. Tang, X. Li, Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32(5), 1447–1475 (1994)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019