Mathematical Finance pp 97-169 | Cite as
Lévy Processes
Chapter
First Online:
- 1.2k Downloads
Abstract
The continuous-time analogue of a random walk is called a Lévy process. One may also view Lévy processes as the stochastic counterpart of linear functions. Both viewpoints illustrate that these processes play a fundamental role.
References
- 1.M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55 (U.S. Government Printing Office, Washington, D.C., 1964)zbMATHGoogle Scholar
- 2.D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. (Cambridge Univ. Press, Cambridge, 2009)CrossRefGoogle Scholar
- 9.O. Barndorff-Nielsen, Processes of normal inverse Gaussian type. Finance Stochast. 2(1), 41–68 (1998)MathSciNetCrossRefGoogle Scholar
- 23.J. Bertoin, Lévy Processes (Cambridge Univ. Press, Cambridge, 1996)zbMATHGoogle Scholar
- 38.S. Boyarchenko, S. Levendorskiı̆, Non-Gaussian Merton-Black-Scholes Theory (World Scientific, River Edge, 2002)Google Scholar
- 51.P. Carr, H. Geman, D. Madan, M. Yor, The fine structure of asset returns: An empirical investigation. J. Bus. 75(2), 305–332 (2002)CrossRefGoogle Scholar
- 60.R. Cont, P. Tankov, Financial Modelling with Jump Processes (Chapman & Hall/CRC, Boca Raton, 2004)Google Scholar
- 75.C. Dellacherie, P.-A. Meyer, Probabilities and Potential (North-Holland, Amsterdam, 1978)zbMATHGoogle Scholar
- 76.C. Dellacherie, P.-A. Meyer, Probabilities and Potential B: Theory of Martingales (North-Holland, Amsterdam, 1982)zbMATHGoogle Scholar
- 82.E. Eberlein, U. Keller, Hyperbolic distributions in finance. Bernoulli 1(3), 281–299 (1995)CrossRefGoogle Scholar
- 88.E. Eberlein, K. Prause, The generalized hyperbolic model: financial derivatives and risk measures, in Mathematical Finance—Bachelier Congress, 2000 (Paris) (Springer, Berlin, 2002), pp. 245–267zbMATHGoogle Scholar
- 90.E. Eberlein, S. Raible, Some analytic facts on the generalized hyperbolic model, in European Congress of Mathematics, Vol. II (Barcelona, 2000), volume 202 of Progr. Math. (Birkhäuser, Basel, 2001), pp. 367–378CrossRefGoogle Scholar
- 91.E. Eberlein, E. von Hammerstein, Generalized hyperbolic and inverse Gaussian distributions: limiting cases and approximation of processes, in Seminar on Stochastic Analysis, Random Fields and Applications IV, vol. 58 (Birkhäuser, Basel, 2004), pp. 221–264zbMATHGoogle Scholar
- 152.J. Jacod, Calcul Stochastique et Problèmes de Martingales, volume 714 of Lecture Notes in Math (Springer, Berlin, 1979)CrossRefGoogle Scholar
- 154.J. Jacod, A. Shiryaev, Limit Theorems for Stochastic Processes, 2nd edn. (Springer, Berlin, 2003)CrossRefGoogle Scholar
- 182.J. Kallsen, A. Shiryaev, The cumulant process and Esscher’s change of measure. Finance Stochast. 6(4), 397–428 (2002)MathSciNetCrossRefGoogle Scholar
- 186.I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, 2nd edn. (Springer, New York, 1991)zbMATHGoogle Scholar
- 195.S. Kou, A jump-diffusion model for option pricing. Manag. Sci. 48(8), 1086–1101 (2002)CrossRefGoogle Scholar
- 200.U. Küchler, S. Tappe, Bilateral gamma distributions and processes in financial mathematics. Stoch. Process. Appl. 118(2), 261–283 (2008)MathSciNetCrossRefGoogle Scholar
- 202.A. Kyprianou, Fluctuations of Lévy Processes with Applications, 2nd edn. (Springer, Heidelberg, 2014)CrossRefGoogle Scholar
- 209.E. Luciano, P. Semeraro, A generalized normal mean-variance mixture for return processes in finance. Int. J. Theor. Appl. Finance 13(3), 415–440 (2010)MathSciNetCrossRefGoogle Scholar
- 210.D. Madan, E. Seneta, The variance gamma (V.G.) model for share market returns. J. Bus. 63(4), 511–524 (1990)CrossRefGoogle Scholar
- 220.R. Merton, Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3(1–2), 125–144 (1976)CrossRefGoogle Scholar
- 238.P. Protter, Stochastic Integration and Differential Equations, 2nd edn. (Springer, Berlin, 2004)zbMATHGoogle Scholar
- 241.D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd edn. (Springer, Berlin, 1999)CrossRefGoogle Scholar
- 256.G. Samorodnitsky, M. Taqqu, Stable Non-Gaussian Random Processes (Chapman & Hall, New York, 1994)zbMATHGoogle Scholar
- 259.K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge Univ. Press, Cambridge, 1999)zbMATHGoogle Scholar
- 263.W. Schoutens, Lévy Processes in Finance (Wiley, New York, 2003)CrossRefGoogle Scholar
- 288.E. von Hammerstein, Generalized Hyperbolic Distributions: Theory and Applications to CDO Pricing. PhD thesis, University of Freiburg, 2010Google Scholar
- 289.E. von Hammerstein, Tail behaviour and tail dependence of generalized hyperbolic distributions, in Advanced Modelling in Mathematical Finance: In Honour of Ernst Eberlein, vol. 189, ed. by J. Kallsen, A. Papapantoleon (Springer, 2016), pp. 3–40Google Scholar
Copyright information
© Springer Nature Switzerland AG 2019