Mathematical Finance pp 595-615 | Cite as

# Mean-Variance Hedging

Chapter

First Online:

- 1.2k Downloads

## Abstract

In Sect. 11.3 we discussed pricing and hedging of OTC derivatives from the option writer’s point of view. The approach was based on arbitrage arguments.

## References

- 3.T. Arai, An extension of mean-variance hedging to the discontinuous case. Finance Stochast.
**9**(1), 129–139 (2005)MathSciNetzbMATHCrossRefGoogle Scholar - 37.N. Bouleau, D. Lamberton, Residual risks and hedging strategies in Markovian markets. Stoch. Process. Appl.
**33**, 131–150 (1989)MathSciNetzbMATHCrossRefGoogle Scholar - 54.A. Černý,
*Mathematical Techniques in Finance: Tools for Incomplete Markets*, 2nd edn. (Princeton Univ. Press, Princeton, 2009)zbMATHCrossRefGoogle Scholar - 55.A. Černý, J. Kallsen, On the structure of general mean-variance hedging strategies. Ann. Probab.
**35**(4), 1479–1531 (2007)MathSciNetzbMATHCrossRefGoogle Scholar - 56.A. Černý, J. Kallsen, Mean-variance hedging and optimal investment in Heston’s model with correlation. Math. Finance
**18**(3), 473–492 (2008)MathSciNetzbMATHCrossRefGoogle Scholar - 79.D. Duffie, H. Richardson, Mean-variance hedging in continuous time. Ann. Appl. Probab.
**1**(1), 1–15 (1991)MathSciNetzbMATHCrossRefGoogle Scholar - 118.H. Föllmer, D. Sondermann, Hedging of nonredundant contingent claims, in
*Contributions to Mathematical Economics*, ed. by W. Hildenbrand, A. Mas-Colell (North-Holland, Amsterdam, 1986), pp. 205–223Google Scholar - 128.C. Gourieroux, J. Laurent, H. Pham, Mean-variance hedging and numéraire. Math. Finance
**8**(3), 179–200 (1998)MathSciNetzbMATHCrossRefGoogle Scholar - 147.F. Hubalek, J. Kallsen, Variance-optimal hedging and Markowitz-efficient portfolios for multivariate processes with stationary independent increments with and without constraints (2004). preprintGoogle Scholar
- 148.F. Hubalek, J. Kallsen, L. Krawczyk, Variance-optimal hedging for processes with stationary independent increments. Ann. Appl. Probab.
**16**(2), 853–885 (2006)MathSciNetzbMATHCrossRefGoogle Scholar - 178.J. Kallsen, A. Pauwels, Variance-optimal hedging in general affine stochastic volatility models. Adv. Appl. Probab.
**42**(1), 83–105 (2010)MathSciNetzbMATHCrossRefGoogle Scholar - 179.J. Kallsen, A. Pauwels, Variance-optimal hedging for time-changed Lévy processes. Appl. Math. Finance
**18**(1), 1–28 (2011)MathSciNetzbMATHCrossRefGoogle Scholar - 184.J. Kallsen, R. Vierthauer, Quadratic hedging in affine stochastic volatility models. Rev. Deriv. Res.
**12**(1), 3–27 (2009)zbMATHCrossRefGoogle Scholar - 231.A. Pauwels,
*Variance-Optimal Hedging in Affine Volatility Models*. PhD thesis, Technical University of Munich, 2007Google Scholar - 233.H. Pham, On quadratic hedging in continuous time. Math. Methods Oper. Res.
**51**(2), 315–339 (2000)MathSciNetzbMATHCrossRefGoogle Scholar - 270.M. Schweizer, A guided tour through quadratic hedging approaches.
*Option Pricing, Interest Rates and Risk Management*(Cambridge Univ. Press, Cambridge, 2001), pp. 538–574Google Scholar

## Copyright information

© Springer Nature Switzerland AG 2019