Advertisement

Mean-Variance Hedging

  • Ernst Eberlein
  • Jan Kallsen
Chapter
  • 1.2k Downloads
Part of the Springer Finance book series (FINANCE)

Abstract

In Sect.  11.3 we discussed pricing and hedging of OTC derivatives from the option writer’s point of view. The approach was based on arbitrage arguments.

References

  1. 3.
    T. Arai, An extension of mean-variance hedging to the discontinuous case. Finance Stochast. 9(1), 129–139 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 37.
    N. Bouleau, D. Lamberton, Residual risks and hedging strategies in Markovian markets. Stoch. Process. Appl. 33, 131–150 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 54.
    A. Černý, Mathematical Techniques in Finance: Tools for Incomplete Markets, 2nd edn. (Princeton Univ. Press, Princeton, 2009)zbMATHCrossRefGoogle Scholar
  4. 55.
    A. Černý, J. Kallsen, On the structure of general mean-variance hedging strategies. Ann. Probab. 35(4), 1479–1531 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 56.
    A. Černý, J. Kallsen, Mean-variance hedging and optimal investment in Heston’s model with correlation. Math. Finance 18(3), 473–492 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 79.
    D. Duffie, H. Richardson, Mean-variance hedging in continuous time. Ann. Appl. Probab. 1(1), 1–15 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 118.
    H. Föllmer, D. Sondermann, Hedging of nonredundant contingent claims, in Contributions to Mathematical Economics, ed. by W. Hildenbrand, A. Mas-Colell (North-Holland, Amsterdam, 1986), pp. 205–223Google Scholar
  8. 128.
    C. Gourieroux, J. Laurent, H. Pham, Mean-variance hedging and numéraire. Math. Finance 8(3), 179–200 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 147.
    F. Hubalek, J. Kallsen, Variance-optimal hedging and Markowitz-efficient portfolios for multivariate processes with stationary independent increments with and without constraints (2004). preprintGoogle Scholar
  10. 148.
    F. Hubalek, J. Kallsen, L. Krawczyk, Variance-optimal hedging for processes with stationary independent increments. Ann. Appl. Probab. 16(2), 853–885 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 178.
    J. Kallsen, A. Pauwels, Variance-optimal hedging in general affine stochastic volatility models. Adv. Appl. Probab. 42(1), 83–105 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 179.
    J. Kallsen, A. Pauwels, Variance-optimal hedging for time-changed Lévy processes. Appl. Math. Finance 18(1), 1–28 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 184.
    J. Kallsen, R. Vierthauer, Quadratic hedging in affine stochastic volatility models. Rev. Deriv. Res. 12(1), 3–27 (2009)zbMATHCrossRefGoogle Scholar
  14. 231.
    A. Pauwels, Variance-Optimal Hedging in Affine Volatility Models. PhD thesis, Technical University of Munich, 2007Google Scholar
  15. 233.
    H. Pham, On quadratic hedging in continuous time. Math. Methods Oper. Res. 51(2), 315–339 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 270.
    M. Schweizer, A guided tour through quadratic hedging approaches. Option Pricing, Interest Rates and Risk Management (Cambridge Univ. Press, Cambridge, 2001), pp. 538–574Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ernst Eberlein
    • 1
  • Jan Kallsen
    • 2
  1. 1.Department of Mathematical StochasticsUniversity of FreiburgFreiburg im BreisgauGermany
  2. 2.Department of MathematicsKiel UniversityKielGermany

Personalised recommendations