Skip to main content

Briquetting

  • Chapter
  • First Online:
Agglomeration in Metallurgy

Abstract

The creation of a dense mass of dispersed material is a favorite occupation of man, starting from the new Stone Age (the Neolithic, from 7000 BC). Almost as often, a person has to resort to the opposite effect—grinding a solid material. The most important branch of economic activity, in which both of these processes are extremely important, is metallurgy, which originated in the so-called Iron Age (from 1200 BC to 340 AD). And by the way, in which century we live now? Judging by the role that iron and steel play in our life, we can confidently consider the modern era of the information civilization as another period of the Iron Age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vegman EF (1981) Concise handbook for blast-furnace operators. Metallurgiya, Moscow (in Russian)

    Google Scholar 

  2. Pavlov VV (2013) The incongruities of metallurgy: scientific monograph. Ural State Mining University (3rd edn, revised and enlarged). Publishing House of the USU, Ekaterinburg, 212 p. ISBN 978-5-8019-0272-2 (in Russian)

    Google Scholar 

  3. Fedulov YuV (2002) Alternative directions for the development of the blast furnace process in the 21st century. Steel 10:14–19 (in Russian)

    Google Scholar 

  4. Zudin VM, Morev II, Voronov FD et al. Patent USSR No. 129213. (C21B 13/14) Device for direct production of iron. Priority 11/24/1959 (in Russian)

    Google Scholar 

  5. Hakue R, Ray HS, Mukherjee A (1991) Fluidized bed reduction of iron ore by coal fines. ISIJ Int 31(11):1279–1285

    Article  Google Scholar 

  6. Zeller S, Reidetschlager J, Ofner HP, Peer G (2003) Update on FINMET technology, Product information, Siemens VAI

    Google Scholar 

  7. Nuber D, Eichberger H, Rollingen B (2006) Circored fine ore direct reduction. Millennium Steel 37–40

    Google Scholar 

  8. Elmquist SA, Weber P, Eichberger H (2002) Operational results of the Circored fine ore reduction plant in Trinidad. Stahl Eisen 122(2):59–64

    CAS  Google Scholar 

  9. Harman CN (2010) Reduction of chromite fines in solid state using a mixture of gases containing natural gas, hydrogen and nitrogen. In: Harman CN (ed) INFACON 12, Helsinki, Finland, 283–388 pp

    Google Scholar 

  10. Romenets VA (ed) et al (2005) The Romelt Process [in Russian]. Ruda i Metally, Moscow (2005) (in Russian)

    Google Scholar 

  11. World Steel in Figures © World Steel Association 2018 ISBN 978-2-930069-89-0

    Google Scholar 

  12. List of Patents. Inventions and Designs, issued at the United States from 1790 to (1847) Washington, 1847. Printed by J&G.S, Gideon

    Google Scholar 

  13. Watt KA (1990) Nineteenth century brickmaking innovations in Britain: building and technological change. Ph.D. thesis, University of York

    Google Scholar 

  14. Electronic resource http://www.binfieldheath.org.uk/the-village/binfield-heath/history/brickmaking

  15. Man, Izv G (1841), No. 5, pp 180–184 (in Russian)

    Google Scholar 

  16. Berthelot Ch (1938) Epuration sechage, agglometionet broyage du charbon, Paris: chez Dunod 1938, 22e partie: Appareillage modern pour la fabrication des boukets et briquettes: Les Ayelliers d’agglometaion des mines de Mariemont-Bascoup (Belgique), p 321

    Google Scholar 

  17. Hatheway AW (2012) Remediation of former manufactured gas plants and other coal-tar sites. Taylor & Francis Group, CRC Press

    Google Scholar 

  18. Electronic resource http://www.briquettepress.com/News/History-Of-Coal-Ball-Briquetting.html

  19. Wilcox JM (1884) Machinery for compressing and molding pasty substances, No. 309,117. Patented 9 Dec 1884

    Google Scholar 

  20. Eriksson S, Prior M (1990) The briquetting of agricultural wastes for fuel. FAO Environment and Energy Paper 11, FAO of the UN, Rome

    Google Scholar 

  21. Rouse SE (1925) Press for the production of bricks, briquettes, blocks and the like. US Patent No. 1,531,631. Patented 31 Mar 31 1925

    Google Scholar 

  22. Electronic resource https://www.911metallurgist.com/magnetite-concentration/

  23. Yuzbashev L (1901) A method of obtaining various ores and fossil combustible artificial lump ore and artificial lump fuel from fines. Gornyi Zhurnal 2(6):257–288 (in Russian)

    Google Scholar 

  24. Lotosh VE, Okunev AI (1980) Unburnt agglomeration of ores and concentrates. Section SRNTI: Production of ferrous metals and alloys. Science, Moscow, 215 p (in Russian)

    Google Scholar 

  25. Astakhov AG, Machkovsky AI, Nikitin AI et al (1964) Handbook of Sinter. Technique, Kiev, 448 p (in Russian)

    Google Scholar 

  26. Ravich BM (1975) Briquetting in ferrous and non-ferrous metallurgy. Metallurgy, Moscow, p 232 (in Russian)

    Google Scholar 

  27. Averkiev ND, Udovenko NV (1932) Briquetting of top dust and dust ores by alkali silicates. ONTI

    Google Scholar 

  28. Godinsky NA, Kushnarev NN, Yakhshuk DS et al (2003) Experience of using iron-containing briquettes in electric steel-making production. Metallurg 1:43–45 (in Russian)

    Google Scholar 

  29. Tupkary RH, Tupkary VR (2013) An introduction to modern iron making. Khanna Publishers, Delhi

    Google Scholar 

  30. Electronic resource http://agglomeration.org

  31. Sharp KC, Davies OG (1966) J Metals 1:79–86

    Google Scholar 

  32. Metal Bulletin, 1965, 5014, pp 171–173

    Google Scholar 

  33. Skilling Mining Review, 1968, 57, No. 24, p 16

    Google Scholar 

  34. Eng Min J (1972) 173(8):78–81

    Google Scholar 

  35. Harris ZS (1972) Scrap Age 29(9):131–154

    Google Scholar 

  36. Ravych, Yarkho NA (1964) Steel 2:118–119 (in Russian)

    Google Scholar 

  37. Yarkho NA, Ravich BM (1962) Bull “TSIINCHM” 7(435):41 (in Russian)

    Google Scholar 

  38. Butt YuM, Krzheminsky SA (1953) Sat. In: Proceedings ROSNIIMS, Moscow, vol 2, p 75 (in Russian)

    Google Scholar 

  39. Yaroshenko YuG, Gordon YM, Khodorovskaya IYu (2012). In: Yaroshenko YuG (ed) Ekaterinburg: LLC “UIPTS” 2012, 670 p (in Russian)

    Google Scholar 

  40. Electronic resource http://www.koeppern-international.com

  41. Khazanova TP (1961) Production of manganese alloys from poor oxide and carbonate ores. In: Khazanov TP, Shearer GB, Lyakishev NP (eds) Development of the USSR ferroalloy industry, Kiev, p 122 (in Russian)

    Google Scholar 

  42. Khvichia AP (1970) Smelting of silico-manganese from ore briquettes in a furnace with a capacity of 16.5 MVA. Steel 2:138 (Khvichiya AP, Mazmishvili SM) (in Russian)

    Google Scholar 

  43. Sukhorukov AI, Sosedko PM Khitrik SI (1970) Steel 2:135 (in Russian)

    Google Scholar 

  44. Kozhevnikov IYu, Ravich BM (1991) Agglomeration and the foundations of metallurgy. Metallurgy 296 p (in Russian)

    Google Scholar 

  45. Ravich BM (1982) The briquetting of ores. Nedra, Moscow (in Russian)

    Google Scholar 

  46. Frolov YuA (2016) Sintering. Metallurgizdat 672 p (in Russian)

    Google Scholar 

  47. Electronic resource https://www.jernkontoret.se/en/the-steel-industry/production-utilisation-recycling/raw-materials/

  48. Bowen R (1924) Process of fabricating agglomerated mass. US Patent No. 1,647,076. Filed 5 Jan 1924

    Google Scholar 

  49. Electronic resource http://www.vargonalloys.se/index_eng.html

  50. Electronic resource http://www.eurometa.fr/en/

  51. Electronic resource https://www.ssab.com/company/merox/about-merox/history

  52. De Bruin T, Sundqvist L (1998) ICSTI. In: Ironmaking conference proceedings, pp 1263–1273

    Google Scholar 

  53. Sharma T et al (1991) Effect of porosity on the swelling behavior of iron ore pellets and briquettes. ISIJ Int 31:312

    Article  CAS  Google Scholar 

  54. Sharma T et al (1992) Effect of reduction rate on the swelling behavior of iron ore pellets. ISIJ lnt 32:812

    Article  CAS  Google Scholar 

  55. Sharma T et al (1994) Swelling of iron ore pellets under non-isothermal conditions. ISIJ lnt 32:960

    Article  Google Scholar 

  56. US Patent No. 5100464 (1992)

    Google Scholar 

  57. Torok J (2013) Briquetting for the steel industry: then and now. In: 32nd biennale conference of the institute for briquetting and agglomeration, 25–28 Sept 2011, Curran Associates, p 20

    Google Scholar 

  58. Steele RB (1993) Agglomeration of steel mill by-products via auger extrusion. In: Proceedings 23rd biennial conference. IBA, Seattle, WA, USA, pp 205–217

    Google Scholar 

  59. Kurunov I, Bizhanov A (2017) Stiff extrusion briquetting in metallurgy. Springer, Berlin, p 169

    Google Scholar 

  60. Dashevskyi VYa, Kashin VI, Lyakishev NP, Velitchko BF, Ishutin VI (1992) Improving the technological processes of production of manganese ferroalloys. Izvestiya VUZov Ferrous Metall 12:45 (in Russian)

    Google Scholar 

  61. Mazmishvili SM (1992) Development and industrial development of technologies for producing dust briquettes and smelting manganese ferroalloys from them. Izvestiya VUZov Ferrous Metall 12:43 (Mazmishvili SM, Simongulashvili ZA) (in Russian)

    Google Scholar 

  62. Pietsch W (2005) Agglomeration in industry. Occurrence and applications. Wiley, 375 p

    Google Scholar 

  63. Electronic resource http://www.phxslag.com

  64. Noskov VA, Bolshakov VI, Maimur BN et al (2004) Pilot-industrial production of briquettes from screenings of ferroalloys at JSC “NFZ”. Metall Min Ind 3:124–126 (in Russian)

    Google Scholar 

  65. Hycnar JJ, Borowski G, Józefiak T (2014) Conditions for the preparation of stable ferrosilicon dust briquettes. Inż Mineralna J Pol Min Eng Soc 33(1):155–162

    Google Scholar 

  66. Electronic resource http://www.silingen.eu/products/

  67. Electronic resource http://poscoenc.com/file_download/download/project_list_steel_plants.pdf

  68. Noldin JH Jr (2012) An overview of the new and emergent ironmaking technologies. Millennium Steel 19–25

    Google Scholar 

  69. Bratina J (2007) US Patent No. 2007/0157761 A1, July 12

    Google Scholar 

  70. Patent of the Russian Federation No. 2518672 (2012)

    Google Scholar 

  71. Electronic resource https://cordis.europa.eu/project/rcn/55374/factsheet/en

  72. Titov VV, Murat SG, Kiselev NI (2007) Ecology and industry. 1:16–21 (in Russian)

    Google Scholar 

  73. Kurunov IF, Kanaeva OG (2005) Briquetting—a new stage in the development of the technology of agglomeration of raw materials for blast furnaces. Bull Sci Tech Econ Inf “Ferrous Metallurgy” 5:27–32 (in Russian)

    Google Scholar 

  74. Kurunov IF, Shcheglov EM, Kononov AI, Bolshakova OG et al (2007) Study of the metallurgical properties of briquettes from man-made and natural raw materials and evaluation of the effectiveness of their use in blast-furnace smelting. Part 1. Bull Sci Tech Econ Inf “Ferrous Metall” 12:39–48 (in Russian)

    Google Scholar 

  75. Kurunov IF, Shcheglov EM, Kononov AI, Bolshakova, OG et al (2008) Study of the metallurgical properties of briquettes from man-made and natural raw materials and evaluation of the effectiveness of their use in blast-furnace smelting. Part 1. Bull Sci Tech Econ Inf “Ferrous Metall” 1:8–16 (in Russian)

    Google Scholar 

  76. Electronic resource http://www.kmz-tula.ru/articles-20100728.html

  77. Paananen T, Pisilä E (2015) Improved raw material efficiency in hot metal production. In: METEC-ESTAD, Düsseldorf, 15–19 June 2015, pp 1–8

    Google Scholar 

  78. Hunsbedt L, Cowx P (2016) NyKoSi agglomeration seminar, 22–23 Nov 2016

    Google Scholar 

  79. Davey KP (2004) The development of an agglomerate through the use of FeMn waste. In: Proceedings of tenth international ferroalloys congress, INFACON-X: transformation through technology, Cape Town, South Africa, pp 272–280

    Google Scholar 

  80. Electronic resource http://www.fpiwv.com

  81. Bizhanov AM, Kurunov IF (2017) Extrusion Briquettes (Brex), a new stage in the agglomeration of raw materials for ferrous metallurgy, Metallurgizdat, Moscow, 234 p (in Russian)

    Google Scholar 

  82. Patent of the Russian Federation No. 2495092 (2013)

    Google Scholar 

  83. Patent of the Russian Federation No. 2506327 (2014)

    Google Scholar 

  84. Patent of the Russian Federation No. 2499061 (2013)

    Google Scholar 

  85. Patent of the Russian Federation No. 2506326 (2014)

    Google Scholar 

  86. Patent of the Russian Federation No. 2506325 (2014)

    Google Scholar 

  87. Patent of the Russian Federation No. 2502812 (2013)

    Google Scholar 

  88. Patent of the Russian Federation No. 2501845 (2013)

    Google Scholar 

  89. Patent of the Russian Federation No. 2504588 (2013)

    Google Scholar 

  90. Patent of the Russian Federation No. 2579706 (2016)

    Google Scholar 

  91. BREX. Certificate of trademark (service mark) No. 498006, application No. 2012706053 of 02.03.2012. Right holder A. M. Bizhanov (in Russian)

    Google Scholar 

  92. Villanueva A, Hoff S, Michailovski A (2018) Novel binder technology from BASF: study of bentonite modification. In: SME annual meeting, Minneapolis, MN, 25–28 Feb 2018

    Google Scholar 

  93. Electronic resource https://ambershaw.ca/our-technology

  94. Kurunov IF, Bizhanov AM, Tikhonov DN, Mansurova NR (2012) Metallurgical properties of brex. Metallurgist 56(5–6):430–437

    Article  CAS  Google Scholar 

  95. Pisarev SA, Kurenkov DS, Malysheva TYa (2016) Features of the behavior of the magnetite ores of Kovdor deposit in the sintering process. Izvestiya VUZov Ferrous Metall 59(5):354–356 (in Russian)

    Article  CAS  Google Scholar 

  96. Tolochko AI (1990) Utilization of dust and residues in ferrous metallurgy. In: Tolochko AI, Slavin VI, Suprun YM, Khairudinov RM. Metallurgy, Moscow, 143 p (in Russian)

    Google Scholar 

  97. Zubakov AP (2004) Ph.D. Thesis, 237 p (in Russian)

    Google Scholar 

  98. Guzman IYa (ed) (2012) Chemical technology of ceramics. In: Building materials, Moscow, 496 p (in Russian)

    Google Scholar 

  99. Patent of the Russian Federation No. 2204486 Application of 06.08.2001 Published on 20.05.03 Bulletin No. 14

    Google Scholar 

  100. Akhverdov IN (1981) The foundations of the physics of concrete. Stroiizdat, Moscow, 464 p (in Russian)

    Google Scholar 

  101. Sokolov VN, Yurkovets DI, Razgulina OV (1997) Determination of tortuosity coefficient of pore channels by computer analysis of SEM images. Proc Russ Acad Sci Phys Ser 61(10):1898–1902

    CAS  Google Scholar 

  102. Gusev BV, Zazimko VG (1991) Concrete vibration technology. The Builder, Kiev, 158 p (in Russian)

    Google Scholar 

  103. Gusev BV, Olenich DI, Nuryeva M (2017) Application of the methods of theory of similarity and analysis of dimensions in the study of wave phenomena. In: Building materials, equipment, technologies of the XXI century, No. 9–10 (224–225), pp 50–51 (in Russian)

    Google Scholar 

  104. Händle F (ed) Extrusion in ceramics. Springer, Berlin, 413 p

    Google Scholar 

  105. Gregory R (1960) Briquetting coal without a binder. Colliery Guardian, 201, № 5191

    Google Scholar 

  106. Bizhanov AM, Kurunov IF, Dashevskii VYa (2014) Mechanical strength of extrusion briquettes (brex) for blast-furnace and ferroalloy production: I. Dependence of the strength properties of extrusion briquettes on the binder. Russian Metall (Metally) 2015(3):185–190

    Article  Google Scholar 

  107. Moroz II (2011) Technology of structural ceramics. Ecolit, Moscow. 384 p (in Russian)

    Google Scholar 

  108. Ruzhinskiy S et al (2006) All about foam concrete, 2nd edn, improved and expanded. St. Petersburg, OOO Stroy Beton (Stroy Beton, LLC), 630 p (in Russian)

    Google Scholar 

  109. Händle F, Laenger F, Laenger J (2015) Determining the Forming pressures in the extrusion of ceramic bodies with the help of the Benbow-Bridgwater equation using the capillar check. Process Eng 92(10–11):1–7

    Google Scholar 

  110. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge, 615 p

    Google Scholar 

  111. Loytsyanskiy LG (1987) Mechanics of liquids and gases. Science, Moscow, 840 p (in Russian)

    Google Scholar 

  112. Abramovich GN (1991) Applied gas dynamics. Part 1. Science, Moscow, 600 p

    Google Scholar 

  113. Bingham EC (1922) Fluidity and plasticity. McCraw-Hill Book Company, Inc., New York, London, 439 p

    Google Scholar 

  114. Ishlinskiy AY, Ivlev DD (2001) Mathematical theory of plasticity. Publishing House of Physical and Mathematical and Technical Literature, Moscow, 704 p (in Russian)

    Google Scholar 

  115. Laenger K-F, Laenger F, Geiger K (2016) Wall slip of ceramic extrusion bodies, part 2. Process Eng 93(4–5):1–6

    Google Scholar 

  116. Belotserkovskiy OM, Betelin VB, Borisevich VD, Denisenko VV, Kozlov SA, Eriklintsev IV, Konyukhov AV, Oparin AM, Troshkin OV (2011) Toward theory of counterflow in rotating viscous heat-conducting gas. J Comput Math Math Phys 51(2):222–236 (in Russian)

    Article  Google Scholar 

  117. Troshkin OV. Elements of mathematical hydrodynamics and hydrodynamic stability. ISBN-978-3-659-93972-3

    Google Scholar 

  118. Landau LD, Lifshitz EM (1987) Theoretical physics V.7. Theory of elasticity. Science, Moscow, 248 p (in Russian)

    Google Scholar 

  119. Galitskov SY, Nazarov MA (2013) Simulation of velocity field of shear deformations of ceramic mass in forming unit of screw extruder. Fundam Stud 8:29–32

    Google Scholar 

  120. Joseph D (1981) Stability of fluid motions. World, Moscow, 638 p

    Google Scholar 

  121. Mitsoulis E (2007) Flows of viscoplastic materials: models and computations. Rheol Rev 2007:135–178

    Google Scholar 

  122. Kasai A, Toyota H, Nozawa K, Kitayama S (2011) ISIJ Int 51:1333

    Article  CAS  Google Scholar 

  123. Yamamoto T, Sato T, Fujimoto H, Anyashiki T, Fukada K, Sato M, Takeda K, Ariyama T (2011) Tetsu-to-Hagané 97:501

    Article  CAS  Google Scholar 

  124. Electronic resource https://asia.nikkei.com/Business/JFE-Steel-catalyst-helps-cut-blast-furnace-emissions

  125. Kenichi H (2013) Development of new burden for blast furnace operation with low carbon consumption. In: IEAGHG/IETS Iron & Steel Industry CCUS & Process Integration workshop, 6 Nov 2013

    Google Scholar 

  126. Higuchi K, Yokoyama H, Sato H, Chiba M, Nomura S (2017) Tetsu-to-Hagané 103:407

    Article  Google Scholar 

  127. Titov VV, Murat SG, Kiselev NI (2007) The use of recycled materials in the charge of blast furnaces. Ecol Ind 1:16–21 (in Russian)

    Google Scholar 

  128. Electronic resource http://briket.ru/metallurg6.shtml

  129. Kurunov IF, Kanaeva OG (2005) Briquetting is new stage in development of technology for sintering raw materials for blast furnaces. Bull Sci Tech Econ Inf “Ferrous Metall” 5:27–32 (in Russian)

    Google Scholar 

  130. Kurunov IF, Shcheglov EM, Kononov AI, Bolshakova OG et al (2007) Investigation of metallurgical properties of briquettes from technogenic and natural raw materials and assessment of effectiveness of their application in blast furnace smelting. Part 1. Bull Sci Tech Econ Inf “Ferrous Metall” 12:39–48 (in Russian)

    Google Scholar 

  131. Kurunov IF, Shcheglov EM, Kononov AI, Bolshakova OG et al (2008) Investigation of metallurgical properties of briquettes from technogenic and natural raw materials and assessment of effectiveness of their application in blast furnace smelting. Part 1. Bull Sci Tech Econ Inf “Ferrous Metall” 1:8–16 (in Russian)

    Google Scholar 

  132. Singh Maneesh (2004) Bo Björkman effect of reduction conditions on the swelling behavior of cement-bonded briquettes. ISIJ Int 44(2):294–303

    Article  CAS  Google Scholar 

  133. Nicolle R, Rist A (1979) The mechanism of whisker growth in the reduction of wustite. Metall Trans B 10:429

    Article  Google Scholar 

  134. Singh M, Bjorkman B (1999) Cold bond agglomerates of iron and steel plant by-products as burden material for blast furnaces. In: Proceedings of REWAS 99: global symposium on recycling, waste treatment and clean technology, San Sebastian, Spain, vol 2, pp 1539–1548

    Google Scholar 

  135. Kempainen A, Iljana M, Heikkinen E-P, Paananen T, Mattila O, Fabritius T (2014) ISIJ Int 54:1539

    Article  Google Scholar 

  136. Mäkelä M, Paananen T, Heino J, Kokkonen T, Huttunen S, Makkonen H, Dahl O (2012) ISIJ Int 52:1101

    Article  Google Scholar 

  137. Kurunov IF, Malysheva TY, Bolshakova OG (2007) Investigation of phase composition of iron-ore briquettes in order to assess their behavior in blast furnace. Metallurgist 10:41–46

    Google Scholar 

  138. Bizhanov A, Kurunov I, Dalmia Y, Mishra B, Mishra S (2015) Blast furnace operation with 100% extruded briquettes charge. ISIJ Int 55(10):175–182

    Article  CAS  Google Scholar 

  139. Matsui Y, Sawayama M, Kasai A, Yamagata Y, Noma F (2003) ISIJ Int 43:1904

    Article  CAS  Google Scholar 

  140. Kurunov IF, Yashchenko SB, Fursova LA (1986) Theory, technology and equipment of metallurgical production. Calculation of indicators of blast-furnace smelting on a computer. Textbook for course and degree design. Moscow MISiS, p 86 (in Russian)

    Google Scholar 

  141. Kurunov IF, Filatov SV, Bizhanov AM (2016) Assessment of effectiveness of use of ore-coal brex in smelting in blast furnace by mathematical modelling. Metallurgist 10:23–25 (in Russian)

    Google Scholar 

  142. Gasik MI, Lyakishev NP, Emlin BI (1988) Theory and technology of ferroalloys production. Metallurgy, Moscow, 784 p (in Russian)

    Google Scholar 

  143. Zhuchkov VI, Smirnov LA, Zayko VP (2008) Technology of manganese ferroalloys. UrB RAS, Yekaterinburg, 442 p (in Russian)

    Google Scholar 

  144. Khazanova TP (1961) Production of manganese alloys from poor oxide and carbonate ores. In: Khazanova TP, Shearer GB, Lyakishev NP (ed) Development of the USSR ferroalloy industry, Kiev, p 122 (in Russian)

    Google Scholar 

  145. Khvichiya AP (1970) Smelting of silico-manganese from ore briquettes in a 16.5 MVA furnace. Steel 2:138 (Khvichiya AP, Mazmishvili SM) (in Russian)

    Google Scholar 

  146. Sukhorukov AI, Neighbor PM, Khitrik SI (1970) Smelting of marketable silicomanganese on briquettes and sinter. Steel 2:135 (in Russian)

    Google Scholar 

  147. Duarte A, Lindquist WE (1999) Recovery of nickel laterite fines by extrusion. In: Proceedings of 27th biennial conference. IBA, USA, pp 205–217

    Google Scholar 

  148. Bizhanov A, Kurunov I, Podgorodetskyi G, Dashevskyi V, Pavlov A, Chadaeva O (2014) Extruded briquettes—new charge component for the ferroalloys production. ISIJ Int 54(10):2206–2214

    Article  CAS  Google Scholar 

  149. Olsen SE, Tangstad M, Lindstad T (2007) Production of manganese ferroalloys. SINTEF and Tapir Academic Press, Trondheim, p 247

    Google Scholar 

  150. Zhdanov AV (2007) Study of reducibility of manganese ore raw materials. Electrometallurgy 4:32–35 (Zhdanov AV, Zayakin OV, Zhuchkov VI) (in Russian)

    Google Scholar 

  151. Sokolov VN, Yurkovets DI, Razgulina OV (1991) Determination of tortuosity coefficient of pore channels by computer analysis of SEM images. Proc Russ Acad Sci Phys Ser 61(10):1898–1902 (in Russian)

    Google Scholar 

  152. Ivanova VP, Kasatov BK, Krasavina TN (1974) Thermal analysis of minerals and rocks. Resources Publishing House, Leningrad, 399 p (in Russian)

    Google Scholar 

  153. Tolstunov VL, Petrov AV (1989) Study of the processes of phase and microstructural transformations in manganese ores during their reducing heating. Izvestiya VUZov Ferrous Metall 4:9–14 (in Russian)

    Google Scholar 

  154. Glasser FP (1962) The ternary system CaO–MnO–SiO2. J Am Ceram Soc 45(5):242

    Article  CAS  Google Scholar 

  155. Gasik MI (1992) Manganese, Moscow, 608 p (in Russian)

    Google Scholar 

  156. Zhdanov AV (2007) Study of electric resistance of materials and batches used for ferromanganese production. Electrometallurgy 6:24 (Zhdanov AV, Zayakin OV, Zhuchkov VI)

    Google Scholar 

  157. Bizhanov FV, Steele RB, Podgorodetskyi GS, Kurunov IF, Dashevskyi VYa, Korovushkin VV (2013) Extruded briquettes (bricks) for ferroalloy production. Metallurgist 56(11–12):925–932 (March)

    Article  CAS  Google Scholar 

  158. Pavlov AV et al (2000) Research of briquetting process of the fine chromium ores. In: 12th international ferroalloys conference, Helsinki, Finland, 6–9 June 2000

    Google Scholar 

  159. Mikhailov GG, Pashkeev IYu, Senin AV et al (2001) Intensification of chromite carbothermic reduction. In: “Metallurgy and Metallurgists of the 21st Century”, international conference-debate. Moscow, MISIS, pp 83–98 (in Russian)

    Google Scholar 

  160. Bizhanov AM, Podgorodetskyi GS, Kurunov IF, Dashevskyi VYa, Farnasov GA (2013) Experience of use of extrusion briquettes (BREX) to make ferrosilicomanganese. Metallurgist 57(1–2), 105–112 (May)

    Article  Google Scholar 

  161. Akimov EN, Mal’kov, NV, Roschin VE (2013) The electrical conductivity of high-alumina chromic ore. Bull South Ural State Univ Ser “Metall” 13(1):186–188 (in Russian)

    Google Scholar 

  162. Kazchrome News (Vestnik Kazchroma, in Russian) No. 5 (406), 2 Feb 2018, p 5

    Google Scholar 

  163. Bizhanov AM, Kurunov IF, Wakeel AKh (2016) Behavior of extrusion briquettes (brex) in midrex reactors. Part 2. Metallurgist 60(3–4):243–247 (July)

    Article  CAS  Google Scholar 

  164. Bizhanov A, Malysheva T (2017) Metallization of extruded briquettes (brex) in Midrex process. Metals 7(7):259. https://doi.org/10.3390/met7070259

    Article  CAS  Google Scholar 

  165. Bizhanov AM, Kurunov IF, Wakeel AKh (2015) Behavior of extrusion briquettes (brex) in Midrex reactors. Part 1. Metallurgist 59(3–4):283–289 (July)

    Article  CAS  Google Scholar 

  166. Berezhnoy AS (1988) Multicomponent alkaline oxide systems. Scientific Thought, Kiev, p 200 (in Russian)

    Google Scholar 

  167. Bizhanov AM, Wakeel AKh, Kurunov IF, Malysheva TYa (2016) Patent No. 2579706 of the Russian Federation, C22B. Extrusion briquette (BREX) component of the charge of shaft furnaces for direct production of iron. Publ. 03/10/2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aitber Bizhanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bizhanov, A., Chizhikova, V. (2020). Briquetting. In: Agglomeration in Metallurgy. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-26025-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26025-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26024-8

  • Online ISBN: 978-3-030-26025-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics