Skip to main content

Virtual Training for Industrial Process: Pumping System

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2019)

Abstract

The article presents a virtual environment of a pumping system oriented to training of users that interact with industrial processes. The application of it was performed in a graphic engine Unity 3D, where shows two training environments: (i) Electro pumps laboratory, simulates control operations of control for manipulating many configurations from centrifugal pumps in individual, serie or parallel in order to visualize by an HMI the physical parameters such as: pressure, flow and temperature; (ii) Industrial environment the user prepares in a complementary way how to know industrial processes in a practical and realistic way. In order for making the virtual application immersive and interactive, the modeling of the electrical characteristics of the pumping system was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiluisa, M.G., Mullo, R.D., Andaluz, V.H.: Training in virtual environments for hybrid power plant. In: Bebis, G., et al. (eds.) ISVC 2018. LNCS, vol. 11241, pp. 193–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03801-4_18

    Chapter  Google Scholar 

  2. Andaluz, V.H., Castillo-Carrión, D., Miranda, R.J., Alulema, J.C.: Virtual reality applied to industrial processes. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 59–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_5

    Chapter  Google Scholar 

  3. García-Peñalvo, F.J., Cruz-Benito, J., Griffiths, D., Achilleos, A.: Tecnología al Servicio de un Proceso de Gestión de Prácticas Virtuales en Empresas: Propuesta y Primeros Resultados del Semester of Code. In: IEEE-ES, pp. 52–59 (2015)

    Google Scholar 

  4. Chicaiza, E.A., De la Cruz, E.I., Andaluz, V.H.: Augmented reality system for training and assistance in the management of industrial equipment and instruments. In: Bebis, G., et al. (eds.) ISVC 2018. LNCS, vol. 11241, pp. 675–686. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03801-4_59

    Chapter  Google Scholar 

  5. Zovko, M.E., Dillon, J.: Humanism vs. competency: traditional and contemporary models of education. Educ. Philos. Theor. 50, 554–564 (2017)

    Article  Google Scholar 

  6. Yu, Y., Duan, M., Sun, C.H., Zhong, Z., Liu, H.: A virtual reality simulation for coordination and interaction based on dynamics calculation. Ships Offshore Struct. 12, 873–884 (2017)

    Article  Google Scholar 

  7. Gonzaga, L., et al.: Immersive virtual fieldwork: advances for the petroleum industry. In: IEEE Computer Society, pp. 561–562 (2018)

    Google Scholar 

  8. Hutton, C., Suma, E.: A realistic walking model for enhancing redirection in virtual reality. In: IEEE Virtual Reality (VR), pp. 183–184 (2016)

    Google Scholar 

  9. Xu, W., Wei, D., Lei, C.: Control for the centrifugal pump in the simulation platform of power plants, pp. 264–267. Springer Nature Switzerland (2016)

    Google Scholar 

  10. Koltun, G., Kolter, M., Vogel-Heuse, B.: Automated generation of modular PLC control software from P&ID diagrams in process industry. In: IEEE Institute of Automation and Information Systems, Technical University of Munich, Munich, Germany, pp. 978-985 (2018)

    Google Scholar 

  11. Andaluz, V.H., et al.: Oil processes VR training. In: Bebis, G., et al. (eds.) ISVC 2018. LNCS, vol. 11241, pp. 712–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03801-4_62

    Chapter  Google Scholar 

  12. Arroyo, E., Hoernicke, M., Rodríguez, P., Fay, A.: Automatic derivation of qualitative plant simulation models from legacy piping and instrumentation diagrams. Comput. Chem. Eng. 92, 112–132 (2016)

    Article  Google Scholar 

  13. Hahn, A., Hensel, S., Hoernicke, M., Urbas, L.: Concept for the detection of virtual functional modules in existing plant topologies. In: IEEE 14th International Conference on Industrial Informatics, pp. 820–825 (2017)

    Google Scholar 

  14. Toghraei, M.: Principles of P&ID development: the tips provided here will streamline efforts to develop piping & instrumentation diagrams. Chem. Eng. 62 (2019)

    Google Scholar 

  15. Saguarduy, J.: MathWorks (2016). https://la.mathworks.com/matlabcentral/fileexchange/56568-pump-speed-control-water-hammer-pressure-waves

  16. INEN. Simbolos gráficos. Colores de seguridad y señales de seguridad (2013). https://www.aguaquito.gob.ec/wp-content/uploads/2018/01/IN-3-NORMA-TECNICA-NTNINEN-ISO-3864-12013-S%C3%8DMBOLOS-GR%C3%81FICOS-COLORES-DESEGURIDAD-Y-SE%C3%91ALES-DE-SEGURIDAD.pdf

  17. NORMALIZACION, I.E.: INEN. Recuperado el 12 de 02 de 2019 (05 de 2013). https://www.ecp.ec/wp-content/uploads/2017/10/INEN_ISO_3864

Download references

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, Universidad Nacional de Chimborazo, and Grupo de Investigación ARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edison P. Yugcha , Jonathan I. Ubilluz or Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yugcha, E.P., Ubilluz, J.I., Andaluz, V.H. (2019). Virtual Training for Industrial Process: Pumping System. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2019. Lecture Notes in Computer Science(), vol 11614. Springer, Cham. https://doi.org/10.1007/978-3-030-25999-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25999-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25998-3

  • Online ISBN: 978-3-030-25999-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics